
Int. J. Human-Computer Studies 108 (2017) 105–121

Contents lists available at ScienceDirect

International Journal of Human-Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

A task-based taxonomy of erroneous human behavior

Matthew L. Bolton

University at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NY, USA

a r t i c l e i n f o

Keywords:

Human error

Erroneous human behavior

Task analysis

System safety

Formal methods

a b s t r a c t

Unexpected, erroneous human interactions often contribute to failures in complex systems. Human factors en-

gineers and researchers have developed taxonomies that allow engineers, designers, and practitioners to think

about and model erroneous behavior to improve the safety of human-interactive systems. However, the two lead-

ing erroneous behavior taxonomies are based on incompatible phenomenological and genotypical perspectives.

Further, neither of these are formulated in terms of task analytic methods, analysis and modeling techniques

human factors engineers use for documenting how humans normatively achieve goals when interacting with a

system. In this work, we introduce a new erroneous human behavior taxonomy based on where and how human

behavior diverges from task analytic models of human behavior. By describing where a human diverges from a

normative task, and by identifying what information the human failed to properly attend to that produced the

divergence, this taxonomy seeks to unify the phenomenological and genotypical perspectives. We describe the

theory behind this taxonomy and the different erroneous behavior classifications that result from it. We then

show how it is compatible with the leading phenomenological and genotypical taxonomies. Finally, we discuss

the implications of this new taxonomy and avenues of future research.

© 2017 Elsevier Ltd. All rights reserved.

1

e

(

s

e

t

o

(

2

2

o

t

R

b

c

M

R

(

c

e

a

i

u

i

h

b

i

c

a

c

o

c

p

u

n

n

t

i

o

r

2

h

R

A

1

. Introduction

In complex systems that depend on human behavior, unexpected

rroneous human interactions often contribute to system failures

 Hollnagel, 1993 ; [Perrow, 1999] ; Reason, 1990; Sheridan and Para-

uraman, 2005). This problem affects nearly every facet of our soci-

ty. It plays a role in between 44,000 and 98,000 deaths and more

han 1,000,000 injuries a year in medicine (Kohn et al., 2000); 74%

f general aviation accidents and 50% of commercial aviation accidents

 Kebabjian, 2016; Kenny, 2015); 90% of automobile accidents (NHTSA,

008); a third of unmanned aerial vehicle mishaps (Manning et al.,

004); and many incidents of fratricide in military operations (Office

f Technology Assessment, 1993).

Erroneous behavior is often a product of poorly designed human in-

eraction and is thus enabled by the tasks of the system (Hollnagel, 1993;

eason, 1990; Sheridan and Parasuraman, 2005). Taxonomies have

een developed to give analysts and engineers ways of thinking about,

lassifying, and modeling erroneous human behavior (Hollnagel and

arsden, 1996; Jones, 1997). The two leading general taxonomies are

eason ’s (1990) Generic Error Modeling System (GEMS) and Hollnagel ’s

1993) phenotypes of erroneous action. GEMS attempts to explain why,

ognitively, erroneous acts occur (their genotypes). The phenotypes of

rroneous action describe how erroneous behaviors observably manifest

s deviations from a plan of action. Both have proven to be extremely
E-mail address: mbolton@buffalo.edu

w

ttp://dx.doi.org/10.1016/j.ijhcs.2017.06.006

eceived 23 August 2016; Received in revised form 12 June 2017; Accepted 27 June 2017

vailable online 28 June 2017

071-5819/© 2017 Elsevier Ltd. All rights reserved.
nfluential in the extended human factors literature, though they are

seful in different contexts. Further, neither specifically address where

n a task the human operator diverges. In the work presented here, we

ave developed a taxonomy that classifies erroneous human behavior

ased on where and how it deviates from a normative human task. This

s a significant contribution because it allows engineers and analysts to

ontextualize erroneous behavior using task-analytic concepts, which

re a cornerstone of human factors engineering. It also connects the

ognitive reasons errors occur with the actual observable phenotypes

f error, reconciling GEMS and Hollnagel ’s phenotypes. Below, we dis-

uss the background necessary for understanding our approach. We then

resent our taxonomy. Following this, we show that our approach can be

sed to bridge the gap between attentional slips in GEMS and the phe-

otypes of erroneous behavior. We do this by demonstrating that our

ew system achieves coverage with respect to these other taxonomies:

hat it is able to account for all of the erroneous behaviors classified

n these taxonomies. We ultimately discuss our results, the implications

f the taxonomy in human factors engineering, and avenues of future

esearch.

. Review of the relevant literature

Task analysis and erroneous human behavior are relevant to this

ork and thus both are discussed below.

http://dx.doi.org/10.1016/j.ijhcs.2017.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijhcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2017.06.006&domain=pdf
mailto:mbolton@buffalo.edu
http://dx.doi.org/10.1016/j.ijhcs.2017.06.006

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

2

d

s

m

i

d

e

c

a

m

T

t

T

b

f

e

i

(

a

e

i

t

a

T

s

2

2

w

b

2

s

2

n

T

H

(

2

t

n

c

b

o

s

p

n

“

p

s

2

i

t

e

o

(

i

c

Table 1

Hollnagel ’s (1993) phenotypes of erroneous action.

Phenotype Description

Zero-order phenotypes

Premature Start Starting an action too early.

Delayed Start Starting an action too late.

Premature Finish Finishing an action too soon.

Delayed Completion Finishing an action too late.

Omission Not performing an action.

Jump Forward Performing an action that should be done later.

Jump Backward Performing a previously performed action.

Repetition Repeating the last action performed.

Intrusion Performing an unplanned action.

First-order phenotypes

Spurious Intrusion Performing a sequence of unplanned actions via multiple

zero-order intrusions.

Jump / Skip Actions are skipped in either the forward or backward

direction.

Place Losing Planned actions are performed in an arbitrary order via

multiple skips and jumps.

Recovery Performing previously omitted actions via multiple jumps.

Side Tracking Replacing one part of a plan with another.

Capture Performing part of another action sequence in the wrong

place via multiple intrusions.

Reversal Reversing the execution of two adjacent actions via a skip

and a jump backward.

Time Compression Multiple premature starts and/or premature finishes.

w

a

c

(

a

s

w

t

a

b

h

m

m

t

w

t

f

i

t

t

c

a

a

m

f

c

t

a

o

m

e

2

f

f

(

b

t
.1. Task analysis and task analytic models

Task analysis is a systematic process human factors engineers use to

escribe the ways human operators normatively achieve goals with a

ystem (Kirwan and Ainsworth, 1992; Schraagen et al., 2000). This is

ost commonly documented using a task analytic model. Such a model

s a collection of individual tasks, where each is a hierarchy of goal-

irected activities that decompose into other activities and (at the low-

st level) actions. Strategic knowledge (condition logic) and operators

ontrol when and how activities can execute in relation to each other

nd the operational environment. Task analytic models are some of the

ost successful technologies developed by human factors researchers.

hey are critical to human-centered design (where human-machine in-

erfaces are designed to support human operator tasks; Cooley, 2000).

hey can be used to generate human-machine interfaces in model-

ased design and analysis (Li et al., 2015, 2017). They are used in

ormal verifications analysis of human-automation interaction (Bolton

t al., 2013) (where properties are proven about models of human-

nteractive systems). They are important in human-reliability analyzes

 Hollnagel, 1998). Finally, they are employed in accident and event

nalysis (Doytchev and Szwillus, 2009).

There are a number of different ways to represent task analytic mod-

ls. Because this work is concerned with deviations from task models,

t is important to be able to reason about the execution state of the

ask. Researchers have developed task analytic modeling systems that

llow task behavior to be reasoned about with mathematical precision.

hese include ConcurTaskTrees (CTT; Paternò et al. 1997), its exten-

ion Hamster (Martinie De Almeida et al., 2013), AMBOSS (Giese et al.,

008), and the Enhanced Operator Function Model (EOFM; Bolton et al.

011). EOFM is expressive, platform independent, feature rich, has a

ell-documented formal semantics (Bolton et al., 2011, 2016), and has

een used in a number of human factors analyzes (Bolton and Bass,

017). Thus, it will be used on the basis for most of the discussion pre-

ented in this paper.

.2. Erroneous human behavior

There are a number of different ways to classify and model erro-

eous human behavior (Hollnagel and Marsden, 1996; Jones, 1997).

he two generic taxonomies that have seen the most widespread use are

ollnagel ’s phenotypes of erroneous action (1993) and Reason ’s GEMS

1990) .

.2.1. The phenotypes of erroneous action

Hollnagel (1993) classified erroneous human behaviors based on

heir phenotype: how erroneous behavior observably deviates from a

ormative plan of actions. In this taxonomy, erroneous behaviors are

omposed of one or more erroneous acts, all capable of being detected

y observing the performance of a single action in a plan. The “zero-

rder ” phenotypes are classified as shown at the top of Table 1 . These

erve as the building blocks for additional, “first-order, ” phenotypes:

henotypes that can be detected by observing multiple zero-order phe-

otypes (see the bottom of Table 1). Hollnagel (1993) also discussed

second-order ” phenotypes, which can be detected by observing multi-

le first-order phenotypes. However, he did not explicitly describe the

pecific phenotypes of this level.

.2.2. The generic error modeling system

In contrast to Hollnagel, Reason (1990) classified erroneous behav-

ors based on their cognitive causes, their genotypes. Reason identified

hree types of errors based on Rasmussen ’s SRK (Skills, Rules, Knowl-

dge) framework (Rasmussen, 1983). That is, errors could occur at any

f the three levels of human information processing. Skill-based failures

slips) occur when the human operator knows how to perform a task and

ntends to do it correctly. However, the person fails execute the plan be-

ause of problems with attention. Rule-based failures (mistakes) occur
106
hen a human operator performs a rule-based behavior that does not

chieve the intended outcome because he or she did not apply a rule

orrectly or had an inadequate plan of action. Knowledge-based failures

mistakes) happen when the human lacks the knowledge to formulate

 proper plan of action for a given situation. The distinction between

lips and mistakes largely comes down to the fact that the latter occurs

hen the human operator does not know how to properly perform a

ask. Thus, for work where there is a clear task model, there is a basic

ssumption that the human operator is properly trained and practica-

le in the task. Thus, slips are the most relevant to the work discussed

ere.

Within the slip error type, Reason (1990) identified different failure

odes to explain the ways that slips can manifest. First, there are failure

odes associated with inattention (someone failing to attend to some-

hing). A double capture slip (commonly called a capture error) occurs

hen a human ’s attention is captured by something and thus does some-

hing different (usually something similar that is more well-rehearsed or

amiliar) from what should be done in his or her task. An omission follow-

ng an interruption can occur as a result of a person not attending to the

ask following an external event. Reduced intentionality takes place when

he human loses track of his or her intentions in the middle of a task. Per-

eptual confusion occurs in tasks where somebody performs the correct

ction on the wrong target due to similarities between the wrong target

nd the correct target. Interference errors happen when the human has

ore than one active or relevant task he or she should or could be per-

orming and the separate tasks become inappropriately blended. Slips

an also occur because of over attention (mistimed attentional checks)

hat can cause a human to perform an omission (not doing something),

 repetition (repeat something already done), or a reversal (reversing the

rder of steps in a sequence). The distinctions between these failure

odes are fuzzy, largely due to the informal nature of GEMS. This, how-

ver, does not negate the usefulness of this taxonomy.

.2.3. Comparison

Both models of erroneous behavior have shown themselves to be use-

ul (Jones, 1997). Hollnagel ’s phenotypes have been predominately used

or activities such as detecting the presence of human errors in monitors

 Hollnagel, 1993), methods for generating and/or exploring erroneous

ehavior in model-based analyzes with defined normative plans of ac-

ion (Bastide and Basnyat, 2007; Bolton and Bass, 2008; Bolton et al.,

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

2

t

v

a

t

r

n

t

d

e

b

fi

u

t

T

t

a

p

G

i

e

2

t

d

t

1

h

c

a

t

a

F

t

m

fi

l

h

d

t

B

r

B

f

e

b

b

c

a

v

s

i

s

b

H

A

m

b

3

l

Table 2

Decomposition operators.

Operator Description

optor_seq Zero or more of the activities or actions in the decomposition

must execute in any order one at a time.

optor_par Zero or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel.

or_seq One or more of the activities or actions in the decomposition

must execute in any order one at a time.

or_par One or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel.

and_seq All of the activities or actions in the decomposition must

execute in any order one at a time.

and_par All of the activities or actions in the decomposition must

execute in any order and can execute in parallel.

xor Exactly one activity or action in the decomposition executes.

ord All activities or actions must execute in the order they appear

in the decomposition.

sync All actions in the decomposition must execute synchronously.

t

t

F

v

m

d

b

a

c

t

t

e

b

t

u

p

l

m

a

3

g

M

l

a

s

a

m

r

a

h

p

s

(

d

d

a

t

T

b

t

a
012; Fields, 2001; Jones, 1997), and techniques such as forcing func-

ions (Norman, 1988) for ensuring that humans remain on task. Con-

ersely, Reason ’s GEMS has found more use in its ability to help system

nalysts and designers understand what causes erroneous behavior so

hat the system can be designed to support the level of work (skills,

ules, and/or knowledge) the human is performing and to avoid cog-

itive conditions that facilitate the associated errors (Jones, 1997). For

his purpose, Reason ’s taxonomy has also been adapted to specialized

omains such as medicine so that its insights can be felt there (Zhang

t al., 2004). Both phenomenological and genotypical perspectives can

e used together as they are in Hollnagel ’s “Phenotype Genotype Classi-

cation Scheme ” (Hollnagel, 1998). However, such perspectives simply

se both classifications of erroneous behavior and do not account for

he connection between them.

Both taxonomies can be related to task models, but in different ways.

he phenotypes of erroneous action assume a normative plan of actions

hat is being observed. A task model is a normative plan. In GEMS, slips

re presumed to occur when the humans have knowledge about how to

erform activities. Such knowledge can be represented as a task model.

iven the importance of task analysis in human factors engineering,

t is surprising that neither of the taxonomies explain where in a task

rroneous behaviors originate.

.3. Erroneous behavior and task analytic models

Attempts have been made to contextualize erroneous behavior in

ask models. Paternò and Santoro (2002) explored different ways that

eviations from task models could occur with CTT models. Similarly,

he THEA (Technique for Human Error Assessment) system (Fields et al.,

997; Pocock et al., 2001a, 2001b) explored systematic ways that be-

avior could deviate from tasks based on Norman ’s execution evaluation

ycle model of human information processing (Norman, 1988). These

pproaches are based on a keyword-guided brainstorming system for

hinking about erroneous human behavior possibilities similar to haz-

rd and operability study (HAZOP; Dunjó et al. 2010; Lawley 1974).

ields (2001) and Bastide and Basnyat (2007) identified specific pat-

erns of human task behavior that could be manually inserted into task

odels to replicate erroneous behavior in simulation and formal veri-

cation analyzes. Bastide and Basnyat (2007) defined a pattern-based

anguage and two specific “error patterns: ” one for a repetition of be-

aviors and one for a post-completion error (an erroneous behavior con-

ition where a human accomplishes their primary goal and then fails

o perform tasks that must follow the completion of the primary goal;

yrne and Bovair 1997). Fields (2001) introduced patterns capable of

eplicating all of Hollnagel ’s (1993) phenotypes of erroneous action.

olton et al. (2012) and Bolton and Bass (2013) introduced two dif-

erent ways of automatically generating erroneous human behavior in

xecutable task models. In the first (Bolton et al., 2012), actions at the

ottom of the task hierarchy are replaced with task structures capa-

le of generating all of Hollnagel ’s zero-order phenotypes and, through

ombination, all of his higher order phenotypes. In the second (Bolton

nd Bass, 2013), the models assume humans can fail to attend to en-

ironmental conditions asserted in task model strategic knowledge in

ituations that can make them repeat, omit, or commit activity behav-

ors erroneously. As such, this second method was capable of generating

ome of the slip behaviors in GEMS (1990) . All of these methods have

een useful in various analyzes, evaluation, and verification contexts.

owever, none are (nor do they aspire to be) full-fledged taxonomies.

s such, none fully enumerates the connection between the observable

anifestation of the erroneous behavior and the cognitive cause for the

ehavior.

. A task-based taxonomy of erroneous human behavior

Task models are widely used in human factors engineering, encapsu-

ate normative human behavior, and describe what environmental and
107
ask conditions the human should be attending to. Thus, deviations from

ask models are appropriate for classifying erroneous human behavior.

urther, the discussion above has shown that both task models and de-

iations from task models are formalizable (can have a specific mathe-

atical definition). As such, an erroneous behavior taxonomy based on

eviations from task analytic models can be formal. This is advantageous

ecause each classification within the taxonomy can have a precise, un-

mbiguous classification.

Below we formulate our erroneous human behavior taxonomy that

lassifies erroneous behaviors formally based on where in a normative

ask model deviations occur. We then show that this taxonomy covers

he erroneous behaviors classified in Hollnagel ’s phenotypes (1993) of

rroneous action and slips from Reason ’s GEMS (1990) . However, to

e able to formulate our taxonomy, we need a formal description of a

ask model to employ as the basis for describing deviations. For this, we

se the EOFM, which is described first. Note that the EOFM is appro-

riate for this work because it is an expressive task analytic modeling

anguage. It also has formal semantics, which provide an unambiguous,

athematical description of how task models execute. These are used

s the basis for the taxonomy.

.1. The Enhanced Operator Function Model (EOFM)

EOFM (Bolton et al., 2011) is a formal task analytic modeling lan-

uage derived from the Operator Function Model (OFM; Mitchell and

iller 1986; Thurman et al. 1998). The language is XML-based and al-

ows for the modeling of human behavior, either individuals or groups,

s an input/output system. Inputs may come from other elements of the

ystem like human-device interfaces or the environment. Output vari-

bles are human actions. The operators ’ task models describe how hu-

an actions may be generated based on input and local variables (rep-

esenting perceptual or cognitive processes).

EOFMs are hierarchical in that they are composed of goal-driven

ctivities that decompose into sub-activities and, at the bottom of the

ierarchy, atomic actions. EOFMs can express strategic knowledge ex-

licitly as Boolean expressions using input and local variables that as-

ert what must be true for them to start executing (Precondition s), repeat

 RepeatCondition s), or complete (CompletionCondition s). Any activity can

ecompose into one or more other activities or one or more actions. A

ecomposition operator specifies the temporal relationships between,

nd the cardinality of, the decomposed activities or actions (when

hey can execute relative to each other and how many can execute).

able 2 shows all of the decomposition operators currently supported

y EOFM.

Observable, atomic human actions or internal (cognitive or percep-

ual) actions exist at the bottom of the task model hierarchy. Observable

ctions have three possible behaviors: AutoReset actions happen as a sin-

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Fig. 1. An example of a visualized EOFM task. In this, a top activity (aActivity)

decomposes into two sub-activities (SubActivity1 and SubActvity2). SubActivity1

and SubActvity2 each decompose into actions. Action1 represents an AutoReset ac-

tion. LocalVariable represents a local variable assignment action, where the local vari-

able is assigned the value of an input variable InputVariable . Action2 is an action with

SetValue behavior that commits the values stored in LocalVariable when the action is

performed.

g

c

v

N

t

s

i

A

i

a

p

a

l

l

u

p

m

h

(

t

s

B

p

w

c

e

S

b

o

t

t

t

a

p

o

t

(

I

o

o

p

I

t

fi

∀

A

fi

f

t

r

S

t

t

t

s

e(
I

∧

s

d

r

o

i

e

p

t

t

t

t

(

p

t

o

n

t

t

i

h

c

i

3

a

I

w

5

p

a

i

le atomic event; Toggle actions switch between occurring and not oc-

urring whenever the action is performed; and SetValue actions convey a

alue that is more complex than simple occurrence or non-occurrence.

on-observable actions allow internal behaviors to be represented as

he assignment of values to local variables. This can be used to repre-

ent the human operator remembering something or some other changes

n cognitive or perceptual state.

EOFMs can be represented visually as tree-like graphs (see Fig. 1).

ctions are rectangles and activities are rounded rectangles. An activ-

ty ’s decomposition is an arrow labeled with the decomposition oper-

tor. The arrow points to a rounded rectangle containing the decom-

osed activities or actions. Strategic knowledge conditions are triangles

nd/or arrows connected to the activity that they constrain. These are

abeled with the Boolean logic of the condition. A Precondition is a yel-

ow, downward-pointing triangle; a CompletionCondition is a magenta,

pward-pointing triangle; and a RepeatCondition is an arrow recursively

ointing to the activity.

EOFMs have formal semantics (Bolton et al., 2011, 2016). This gives

odels represented with it unambiguous, mathematical descriptions of

ow they execute. Every activity and action is treated as a state machine

 Fig. 2) that transitions between three execution states: Ready (waiting

o execute), Executing , and Done . An activity or action starts in the Ready

tate. It transitions between states based on whether or not the specific

oolean conditions on the labeled transitions (Fig. 2) are true.

The strategic knowledge conditions of an activity (Precondition s, Re-

eatCondition s, and CompletionCondition s) are used to partially describe

hen these transitions can occur. However, three additional implicit

onditions are also required. These assert whether an activity can start,

nd, or reset based on the given activity ’s or action ’s position in the task.

pecifically, a StartCondition indicates if an activity can start executing

ased on the execution states of its parent, its parent ’s decomposition

perator, and its siblings (activities or actions in the same decomposi-

ion). An EndCondition indicates if an activity or action can end execu-

ion based on the execution state of its children (activities or actions

he activity decomposes into) and its decomposition operator. Since an

ction has no children, its EndCondition is true when the action has been

roperly executed. Finally, a Reset condition indicates when an activity

r action can return to the Ready execution state.

For any activity or action in a decomposition, a StartCondition has

wo conjuncts:

 𝑝𝑎𝑟𝑒𝑛𝑡.𝑠𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔) ∧

(⋀
∀𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 𝑠

(𝑠.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

)

. (1)

f the parent ’s decomposition operator has a parallel modality, the sec-

nd conjunct is eliminated. If the parent ’s decomposition operator is
108
rd , the second conjunct imposes additional restrictions only on the

revious sibling in the decomposition order: (𝑝𝑟𝑒𝑣 _ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒) .
f it is the xor decomposition operator, the second conjunct is modified

o enforce the condition that no other sibling can execute after one has

nished: ⋀
𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 𝑠

(𝑠.𝑠𝑡𝑎𝑡𝑒 = 𝑅𝑒𝑎𝑑𝑦) . (2)

n activity without a parent (a top-level activity) will eliminate the

rst conjunct. Top-level activities treat each other as siblings in the

ormulation of the second conjunct with an assumed and_seq rela-

ionship. All other activities are treated as if they are in an and_par

elationship and are thus not considered in the formulation of the

tartCondition .

An EndCondition is comprised of two conjuncts that relate to the ac-

ivity ’s children. Since an action has no children, an action ’s EndCondi-

ion defaults to true. The first conjunct asserts that the execution states of

he activity ’s children satisfy the activity ’s decomposition operator. The

econd asserts that none of the children are Executing . This is generically

xpressed as:

 ⨁
∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 𝑐

(𝑐.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒)

)

∧

(⋀
∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 𝑐

(𝑐.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

)

. (3)

n the first conjunct,
⨁

(a generic operator) is to be substituted with

if the activity has the and_seq , and_par , ord , or sync decompo-

ition operator; and ∨ if the activity has the or_seq , or_par , or xor

ecomposition operator. Since optor_seq and optor_par enforce no

estrictions, the first conjunct is eliminated when the activity has either

f these decomposition operators.

The Reset condition is true in two situations. First, when an activ-

ty repeats (through an Executing -to- Executing transition with reset), ev-

ry descendant activity or action (any activities or actions that decom-

ose from the repeating activity) will Reset . Second, any top-level ac-

ivity, will have its Reset condition automatically be true when it enters

he Done state. When this activity Reset s, all of its descendant activi-

ies and actions will Reset . More details on the EOFM formal seman-

ics can be found in Bolton et al. (2011, 2016) and Bolton and Bass

2017) .

The behavior of action outputs and local variable assignments are de-

endent on the action formal semantics. For AutoReset action behavior,

he human action output is treated as Boolean (true when the action is

ccurring and false otherwise) and occurs when a corresponding action

ode in the EOFM task structure is Executing and does not at any other

ime. For an action with toggle behavior, the human action switches be-

ween occurring and not occurring when the corresponding action node

s Executing . An action with SetValue behavior will set the corresponding

uman action ’s value when the action is Executing . An action with a lo-

al variable (an internal action) has its value assigned when the action

s Executing .

.2. An example for illustrating concepts

To facilitate the discussion of our erroneous behavior taxonomy, we

re going to use a simple running example: a coffee machine (Fig. 3).

n this example, we assume that the coffee machine brews coffee using

ater and pods that a user has entered into the machine.

The tasks for interacting with this machine are shown in Figs. 4 and

 . Fig. 4 shows the task behavior a user would use to initiate the brewing

rocess. Fig. 5 shows the behavior for retrieving a brewed cup of coffee

nd properly cleaning up the machine. The task model takes inputs that

ndicate:

• The state of the machine ’s power light (iPowerOn : which is true

when the light is on and false otherwise);
• The state of the machine ’s reservoir lid (iLidClosed : which is true

when the lid is closed and false otherwise);

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Fig. 2. Formal semantics of an EOFM (a) activity ’s and (b) action ’s execution state presented as finite state transition systems (Bolton et al., 2011). Transitions are labeled with Boolean

expressions that allow a transition to occur when they are true. Note that with Reset is used to indicate a situation where all descendant activities and actions are Reset when the

associated transition occurs.

Fig. 3. A pod-based coffee machine.

H

(

m

d

a

f

t

i

t

i

i

p

(

d

u

s

w

e

M

t

m

a

a

c

p

o

t

t

d
• An indication of whether or not that machine has enough water

(iEnoughWater : which is true if there is enough water and false

otherwise);
• A variable representing the state of the machine ’s handle (iHan-

dleUp : which is true when the handle is up and false when it is

down);
• A variable indicating the state of the mug (iMugState ; which can

be Absent if no mug is placed, Empty if the mug is placed and

empty; and Filled if the mug is placed and full);
• A light indicating if the machine is brewing (iBrewing : which is

true if the machine is brewing and false otherwise); and
• The state of the pod in the machine (iPodState : which can have

three values indicating if the pod is Fresh, Used, or Absent).

The human can, in turn, perform a number of actions on the machine.

e or she can:

• Press the power button (hPressPowerButton);
109
• Open and close the reservoir lid (hOpenLid and hCloseLid respec-

tively);
• Pour water into the reservoir (hPourWater);
• Lift and lower the handle (hLiftHandle and hLowerHandle re-

spectively);
• Enter (hEnterPod) multiple types of pods (i.e. a CoffeePod or Tea-

Pod);
• Remove a pod (hRemovePod);
• Place and remove a mug (hPlaceMug and hRemoveMug respec-

tively); and
• Press the brew button (hPressBrewButton).

The user can perform the task for preparing for and brewing coffee

 aBrewCoffee ; Fig. 4) if its precondition is satisfied: that the coffee

achine is not brewing and the mug is not full. This is accomplished by

oing two activities in order: preparing the machine (aPrepMachine)

nd initiating brewing (aBrew). To prepare the machine, the user per-

orms four sub-activities, one at a time, in any order: if the power is off,

urning it on (aTurnOn) by pressing the power button (hPressPower);

f there is not enough water, continually adding water (hPourWater via

he aPourWater activity) until enough water has been deposited; plac-

ng the mug (hPlaceMug via aPlaceMug) if no mug is present; and

nserting a pod into the machine (aAddPod). This last activity decom-

oses into four sub-activities that are performed in the specified order

from left to right; Fig. 4). If the handle is down, the human lifts the han-

le (hLiftHandle via aLiftHandle); if a used pod is in the machine, the

ser removes it (hRemovePod via aClearOldPod); if the pod is ab-

ent, the user inserts a fresh coffee pod (hEnterPod via aEnterPod ,

here hEnterPod inputs a CoffeePod); and, if the handle is up, low-

ring the handle (hLowerHandle via aLowerHandle). Once aPrep-

achine is Done , the user can initiate brewing (aBrew) by pressing

he brew button (hPressBrew).

The task for retrieving a brewed cup of coffee and cleaning up the

achine (aGetCoffee ; Fig. 5) can occur if the machine is not brewing

nd the mug is filled. This occurs by performing three sub-activities, one

t a time, in any order: turning the power off (aPowerOff) if it is on;

learing the used pod (aClearPod) by lifting the handle, removing the

od, and then lowering the handle; and picking up the now brewed cup

f coffee (aGetMug).

It is important to note the task model as presented here is a struc-

ural representation of the human behavior. The precise ways that the

ask can execute are determined by its formal semantics, which were

iscussed in the previous section. Specifically, every activity and action

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Fig. 4. EOFM task behavior model for describing how a human would prepare the machine for brewing and initiate brewing.

Fig. 5. EOFM task behavior for retrieving a brewed cup of coffee and performing the requisite machine maintenance.

i

d

P

i

R

(

a

b

3

n Figs. 4 and 5 is interpreted as a finite state machine with transitions as

escribed in Fig. 2 (a) and (b) respectively. As previously described, the

recondition s, RepeatCondition s, and CompletionCondition s come explic-

tly from the task model. However, StartCondition s, EndCondition s, and

eset s are implicit in the model. For example, the activity aAddWater

 Fig. 4) would have the StartCondition

𝑎𝑃 𝑟𝑒𝑝𝑀𝑎𝑐ℎ𝑖𝑛.𝑆𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

∧
⎛ ⎜ ⎜ ⎝
𝑎𝑇 𝑢𝑟𝑛𝑂𝑛 . 𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

∧𝑎𝑃 𝑙𝑎𝑐𝑒𝑀𝑢𝑔.𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

∧𝑎𝐴𝑑 𝑑 𝑃 𝑜𝑑 .𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

⎞ ⎟ ⎟ ⎠
(4)
o

110
nd the end condition ⎛ ⎜ ⎜ ⎝
𝑎𝑂𝑝𝑒𝑛𝐿𝑖𝑑.𝑆𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒

∧𝑎𝑃 𝑜𝑢𝑟𝑊 𝑎𝑡𝑒𝑟.𝑆𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒

∧𝑎𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑑.𝑆𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒

⎞ ⎟ ⎟ ⎠
∧
⎛ ⎜ ⎜ ⎝
𝑎𝑂𝑝𝑒𝑛𝐿𝑖𝑑.𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

∧𝑎𝑃 𝑜𝑢𝑟𝑊 𝑎𝑡𝑒𝑟.𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

∧𝑎𝐶𝑙𝑜𝑠𝑒𝐿𝑖𝑑.𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔

⎞ ⎟ ⎟ ⎠
(5)

ased on the semantics from Section 3.1 and (1) and (3) .

.3. The taxonomy

For our taxonomy, we want to classify erroneous behaviors based

n where they deviate from a human operator ’s task and why they do

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Fig. 6. Erroneous transitions in (a) activity and (b) action formal semantics. The type of dotted line used in a transition indicates the erroneous behavior mode (see the legend). All of

the transitions, with the exception of the Done -to- Executing , activity Executing -to- Executing (without a Reset), action Ready -to- Ready , and action Executing -to- Executing ones, have guards

that are the negation of the corresponding transitions from Fig. 2 . The Done -to- Executing transitions represent erroneous resets where the human performs an activity or action when it

should be Done . These are labeled with true because they do not occur in the normative semantics (Fig. 2) and thus are always erroneous. The activity Executing -to- Executing (without a

Reset), action Ready -to- Ready , and action Executing -to- Executing transitions allow an activity or action to stay in its current state when it should transition out of it.

s

e

a

t

h

h

p

v

a

(

w

i

t

s

a

m

(

r

e

e

v

t

n

w

b

s

s

r

F

o

r

f

v

t

F

a

p

e

t

h

A

o

t

e

3

o

T

h

o

o

c

i

h

p

s

a

T

a

D

r

F

s

t

i

t

t

t

t

i

a

E

d

n

e

t

b

n

(

a

w

c
o. The EOFM formal semantics explicitly describe how a task should

xecute normatively. As such, a human who erroneously diverges from

 task will do so in a way that violates the task model ’s formal seman-

ics for a particular activity or action. Thus, by classifying erroneous

uman behavior based on which formal semantics are violated (not ad-

ered to) and how they are violated, we will be able to identify several

henomena. First, we will know from which activity or action the di-

ergent behavior occurred, identifying where in the task the erroneous

ct originated. Second, we will know what the erroneous behaviors are

what the person does) that result from the semantic violation. Finally,

e will know which part of the formal semantics was violated indicat-

ng what the human operator failed to properly attend to and thus why

he erroneous behavior occurred.

Our taxonomy is hierarchical (depicted later in Fig. 7) in that it clas-

ifies erroneous behavior at several levels based on the task structure

nd task formal semantics. First, because of differences in the formal se-

antics between activities (such as aBrewCoffee ; Fig. 4) and actions

such as hPressPower ; Fig. 4), the taxonomy distinguishes between er-

oneous behaviors that originate at the activity or action level s. Task ex-

cution can diverge from the formal semantics through violations of the

xecution state transitions semantics (Fig. 2) or through incorrect action

ariable assignments that occur during the action ’s execution. Thus, our

axonomy next identifies the divergence type associated with the erro-

eous act. These divergences have limited ways they can manifest, what

e call the erroneous behavior mode s. For transition-based erroneous

ehavior, the human can do something (an activity or action) that they

hould not have done (an intrusion), not do an activity or action they

hould have done (an omission), restart the execution of something (a

estart), or fail to perform a transition when it is supposed to (a delay).

or execution-based erroneous behaviors, a person can replace a value

r variable with a correct one or misremember something. These modes

epresent the next level in the taxonomy. Within each of these modes, we

urther classify an erroneous behavior based on the specific point of di-

ergence from the semantics. For transition-based erroneous behaviors,

his represents the specific type of erroneous transition that occurred.

or execution-based erroneous behaviors, this is the type of variable

ssignment being used (the type of action being performed). Finally,

oints of divergence are further refined and given meaningful specific

rroneous behavior types/names based on the information/condition

he human improperly attended to (for transition-based erroneous be-

aviors) or improper variable assignment (for execution-based errors).

 full representation of the hierarchy is shown later in Fig. 7 .

The following sections further elaborate on the details of the taxon-

my. First, we discuss the transition-based erroneous behaviors at both
111
he activity and action-levels. This is followed by a discussion of the

xecution-based erroneous behaviors.

.3.1. Transition-based erroneous behaviors

We classify transition-based erroneous behaviors into modes based

n the type of behavior that can result from an erroneous transition.

he human can do something (an activity or action) that is not his or

er current activity or action (an intrusion), fail to do the correct activity

r action (an omission), restart an already executing activity (a restart),

r fail to transition when it is supposed to (a delay).

Fig. 6 shows the formal state transition semantic violations we in-

lude in the taxonomy and their associated erroneous behavior mode:

ntrusion, omission, restart, or delay. The formal semantics represented

ere do not encompass all of the possible violations that can occur. Some

ossible transitions were excluded because they are either artificial con-

tructs that make sense for the finite automata perspective, but not from

 human error perspective, or they are encapsulated by other transitions.

he discussion below describes each of the included transitions as well

s the transitions that were excluded.

The guards on the Ready -to- Done , Ready -to- Executing , Executing -to-

one , and activity Executing -to- Executing (with reset) transitions each

epresent the negation of the guards on the corresponding conditions in

ig. 2 . That is, they occur in any condition outside of the normative tran-

itions. Erroneous Done -to- Ready transitions are not included because

hey would only result in erroneous behavior if the associated activ-

ty or action then transitioned to Executing . Thus, the Done -to- Executing

ransitions in Fig. 6 represent the erroneous analogs to the Reset condi-

ions in the normative semantics (Fig. 2). The guard on this condition is

rue because any such transition would always be erroneous. The Ready -

o- Ready and Executing -to- Executing (Fig. 6 (a)) transitions (delays) occur

n situations where there should be transitions from Ready -to- Executing

nd Executing -to- Done (respectively). Note that the delay Executing -to-

xecuting transitions do not issue a reset to the associated activity ’s

escendants, thus differentiating them from restart transitions. Further

ote that a comparable Done -to- Done transition is not included in the

rroneous transitions. This is discussed further below.

The erroneous behavior modes and their associated erroneous transi-

ions (points of divergence) are useful for identifying how an erroneous

ehavior manifests and where the divergence occurs. However, they do

ot provide insights into exactly why an erroneous behavior occurred

what the human inappropriately attended to that caused the erroneous

ct). To address this, we can further refine our classification based on

hich conditions in the guard were violated. This determines the spe-

ific erroneous behavior type. Table 3 shows all of the specific erroneous

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Table 3

Activity-level, transition-based erroneous behaviors.

Mode Transition / Point of divergence Transition condition Erroneous behavior type

Intrusion Ready -to- Executing

¬StartCondition ∧ Precondition ∧ ¬CompletionCondition Activity Capture Intrusion

StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ ¬CompletionCondition Activity Premature Intrusion

StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Premature, Repeat Intusion

StartCondition ∧ Precondition ∧ CompletionCondition Activity Completed Intrusion

¬StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ ¬CompletionCondition Activity Spurious Intrusion

¬StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Repeat-Capture Intrusion

¬StartCondition ∧ Precondition ∧ CompletionCondition Activity Completed, Capture Intrusion

StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ CompletionCondition Activity Completed, Premature Intrusion

StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed, Premature, Repeat Intusion

¬StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ CompletionCondition Activity Completed, Spurious Intrusion

¬StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed, Repeat-Capture Intrusion

Done -to- Executing

StartCondition ∧ Precondition ∧ ¬CompletionCondition Activity Reset Intrusion

¬StartCondition ∧ Precondition ∧ ¬CompletionCondition Activity Capture, Reset Intrusion

StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ ¬CompletionCondition Activity Premature, Reset Intrusion

StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Premature, Repeat, Reset, Intusion

StartCondition ∧ Precondition ∧ CompletionCondition Activity Completed Intrusion

¬StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ ¬CompletionCondition Activity Spurious, Reset Intrusion

¬StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Repeat-Capture, Reset Intrusion

¬StartCondition ∧ Precondition ∧ CompletionCondition Activity Completed, Capture, Reset Intrusion

StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ CompletionCondition Activity Completed, Premature, Reset Intrusion

StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed, Premature, Repeat, Reset Intusion

¬StartCondition ∧ ¬Precondition ∧ ¬RepeatCondition ∧ CompletionCondition Activity Completed, Spurious, Reset Intrusion

¬StartCondition ∧ ¬Precondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed, Repeat-Capture, Reset Intrusion

Omission Ready -to- Done

StartCondition ∧ ¬CompletionCondition Activity Omission

Executing -to- Done

¬EndCondition ∧ CompletionCondition Activity Post-Completion Omission

EndCondition ∧ ¬CompletionCondition Activity Non-completion Omission

¬EndCondition ∧ ¬CompletionCondition Activity Spurious Termination Omission

Restart Executing -to- Executing with Reset

¬EndCondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Post-Repetition

EndCondition ∧ ¬RepeatCondition ∧ ¬Precondition ∧ ¬CompletionCondition Activity Premature Restart

EndCondition ∧ ¬RepeatCondition ∧ Precondition ∧ ¬CompletionCondition Activity Premature, Pre-capture Restart

EndCondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed Restart

¬EndCondition ∧ ¬RepeatCondition ∧ ¬Precondition ∧ ¬CompletionCondition Activity Spurious Restart

¬EndCondition ∧ ¬RepeatCondition ∧ Precondition ∧ ¬CompletionCondition Activity Spurious, Pre-capture Restart

¬EndCondition ∧ RepeatCondition ∧ CompletionCondition Activity Completed, Post-Repetition

EndCondition ∧ ¬RepeatCondition ∧ ¬Precondition ∧ CompletionCondition Activity Completed, Premature Restart

EndCondition ∧ ¬RepeatCondition ∧ Precondition ∧ CompletionCondition Activity Completed, Premature Pre-capture Restart

¬EndCondition ∧ ¬RepeatCondition ∧ ¬Precondition ∧ CompletionCondition Activity Completed, Spurious Restart

¬EndCondition ∧ ¬RepeatCondition ∧ Precondition ∧ CompletionCondition Activity Completed, Spurious, Pre-capture Restart

Delay Ready -to- Ready

StartCondition ∧ Precondition ∧ ¬CompletionCondition Activity Start Delay

Executing -to- Executing

EndCondition ∧ CompletionCondition Activity Finish Delay

EndCondition ∧ RepeatCondition ∧ ¬CompletionCondition Activity Repeat Delay

Note. Each erroneous behavior type ’s transition condition satisfies the associated erroneous transition from Fig. 6 (a). Underlines are used to show where in a

transition condition a deviation from normative occurs. For the Done -to- Executing transitions, there is an assumed erroneous reset transition. Note that any given

activity may not have all of the strategic knowledge conditions. If an activity does not explicitly define a particular strategic knowledge condition, there is an assumed

default value, where the default values depend on the transition. For erroneous Ready -to- Done , Ready -to- Executing , and Done -to- Executing : a Precondition ’s default

value is equal to the StartCondition and a RepeatCondition and a CompletionCondition are false by default. For erroneous Executing -to- Executing and Executing -to- Done

transitions: a Precondition and RepeatCondition are false by default and a CompletionCondition is, by default, equal to the EndCondition .

b

t

w

l

(

t

t

e

c

v

d

e

t

A

E

c

k
ehavior types for activity-level erroneous behaviors. Each entry in this

able shows the exact condition (listed under transition condition) under

hich a given erroneous transition / point of divergence occurs. Under-

ines are used to show which conditions are violated in the transition

which condition are improperly attended to by the human). Erroneous

ransitions are also given a descriptive name (erroneous behavior type)

o relate the encapsulated concepts to ideas familiar to human factors

ngineers. These names are convenient for users of the taxonomy be-

ause they account for the conveyed levels, transitions, and condition
112
iolations without requiring potential users to explicitly refer to the un-

erlying erroneous semantics. Below we discuss each of the different

rroneous transitions and their associated specific erroneous behavior

ypes.

ctivity Ready-to-Executing Intrusions. For activity-level Ready -to-

xecuting intrusions, there are 11 erroneous behaviors. An activity

apture intrusion (a classic capture error) occurs when the strategic

nowledge conditions for an activity are satisfied, but it is not the

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

a

i

f

o

f

i

i

f

P

(

a

b

o

t

t

T

c

f

(

s

i

i

e

t

c

s

(

c

f

f

t

f

o

(

c

i

b

e

t

A

E

i

t

t

s

C

m

fi

a

s

o

t

n

A

D

a

b

p

t

f

o

T

n

p

w

t

e

p

a

o

fi

i

p

=

a

n

i

I

a

h

t

t

W

n

p

t

f

M

s

d

A

e

t

T

c

N

t

a

b

p

s

t

c

s

r

b

c

d

e

a

e

A

s

f

E

d

ppropriate time to perform that activity in the task (the StartCondition

s not true). Thus, an activity capture intrusion occurs when the human

ails to attend to the StartCondition properly. An example of this could

ccur with the coffee machine when the human is performing the task

or getting the coffee (Fig. 5) when the mug is placed and the machine

s no longer brewing. In this situation, if there is not enough water

n the reservoir, the human could erroneously perform the activity

or adding water to the machine (aAddWater ; Fig. 4) because its

recondition (¬ iEnoughWater) is satisfied but its StartCondition is not

 𝑎𝑃 𝑟𝑒𝑝𝑀𝑎𝑐ℎ𝑖𝑛.𝑆𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 is false; see (4)).

An activity premature intrusion occurs when it would otherwise be

ppropriate for the activity to start executing (its StartCondition is true),

ut without the Precondition or RepeatCondition being satisfied. Thus, it

ccurs when the human fails to properly attend to these condition. Note

hat RepeatCondition s only show up in transition conditions of Ready -

o- Executing intrusions (Table 3) when the Precondition is not satisfied.

his is because it is irrelevant when the Precondition is true. For the

offee machine, this could occur after the human has completed the task

or brewing the coffee (the task in Fig. 4) and the machine is brewing

 iBrew is true) with the mug in place (iMugPlaced is also true). In this

ituation, aGetCoffee ’s StartCondition is true because aBrewCoffee

s not executing. However, its Precondition is not true because ¬iBrew

s false. Thus, a premature intrusion occurs if somebody attempts to

xecute aGetCoffee .

An activity completed intrusion occurs when both the StartCondi-

ion and Precondition are properly satisfied (if there is indeed a pre-

ondition on the activity), but when the CompletionCondition has been

atisfied. Thus, the activity does not need to execute because its goal

 CompletionCondition) has been achieved. For the coffee application, this

ould happen if the human is performing the task for brewing the cof-

ee (aBrewCoffee ; Fig. 4) but with the machine already configured

or brewing: the power is on, the lid is closed, there is enough wa-

er, the handle is down, the mug is placed and empty, and there is a

resh pod. The human can make an activity completed intrusion if he

r she performs the aPrepMachine activity when its StartCondition

 𝑎𝐵𝑟𝑒𝑤𝐶𝑜𝑓 𝑓 𝑒𝑒.𝑆𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 ∧ 𝑎𝐵𝑟𝑒𝑤.𝑆𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔) and Pre-

ondition are true, even though its CompletionCondition is satisfied.

An activity repeat-capture intrusion is just like an activity capture

ntrusion except that it occurs when a human ’s attention is captured

y the RepeatCondition instead of the Precondition . There are no good

xamples of this in the coffee machine task.

The remainder of the Ready -to- Executing intrusions are varia-

ions/combinations of these erroneous behaviors.

ctivity Done-to-Executing Intrusions. There are 12 activity Done -to-

xecuting intrusions, all dubbed reset intrusions. The base activity reset

ntrusion occurs under the condition where an activity would transi-

ion for Ready -to- Executing normatively. The remainder of the Ready -

o- Executing intrusions are the analogues of Ready -to- Executing intru-

ions, only differing in that they occur from an activity ’s Done state.

onsider the example in the coffee machine application where the hu-

an is performing aGetCoffee (Fig. 5). In this, assume that he or she

rst properly performs the activity for clearing the pod (aClearPod)

nd then performs one or more of the other activities in the decompo-

ition (aPowerOff and/or aGetMug). An activity reset intrusion will

ccur if the human restarts the performance of aClearPod (thus reset-

ing all of its decomposed activities and actions) as if the activity had

ot previously been done.

ctivity Omissions. There are four activity omissions. One for Ready -to-

one and three for Executing -to- Done transitions.

The Ready -to- Done omission occurs when it is appropriate to do the

ctivity (the StartCondition is true) and the goal of the activity has not

een satisfied (the CompletionCondition is false), but the activity is not

erformed because the human treats the completion conditions as if it is
113
rue. For the coffee machine, this could happen when the human is per-

orming aBrewCoffee (Fig. 4) and does not properly attend to the state

f the machine as prescribed in aPrepMachine ’s completion condition.

his could result in the person thinking aPrepMachine is completed,

ot performing the activity, and moving on to aBrew without properly

reparing the machine.

For Executing -to- Done , an activity post-completion omission occurs

hen its CompletionCondition is satisfied, but its EndCondition is not. Note

hat this is a classic post-completion error (Byrne and Bovair, 1997; Li

t al., 2005), a type of erroneous behavior where a human fails to com-

lete sub-goals/activities in a task because the primary goal has been

chieved. The best example of this in the coffee machine task would

ccur under aGetCoffee (Fig. 5). If the human operator retrieves the

lled coffee mug (aGetMug) before performing the other two activ-

ties (aPowerOff and aClearPod), the human may erroneously stop

erforming aGetCoffee because its completion condition (iMugState

 Absent) is satisfied even though its EndCondition is not (aPowerOff

nd aClearPod are not Done).

The opposite of an activity post-completion omission is an activity

on-completion omission. This occurs when the activity ’s EndCondition

s satisfied, but its goal (CompletionCondition) has not been achieved.

n the coffee machine, this is best illustrated by aPourWater under

BrewCoffee (Fig. 4). If the human is performing aPourWater and

as just completed hPourWater , but without yet adding enough wa-

er for iEnoughWater to become true, aPourWater ’s EndCondition is

rue, but not its CompletionCondition . Thus, if the human treats aPour-

ater as if it is Done and moves on to aCloseLid , then an activity

on-completion omission has occurred.

An activity spurious termination omission is a combination of the

revious two erroneous behaviors in that the omission occurs in viola-

ions of an activity ’s EndCondition and CompletionCondition . In the cof-

ee machine, this could occur if the human stops performing aPrep-

achine (under aBrewCoffee ; Fig. 4) before completing all of its

ub-activities (violating its EndCondition) and before its completion con-

ition is satisfied.

ctivity Restarts. Activity restarts, of which there are 11, all occur due to

rroneous Executing -to- Executing transitions, where a reset is broadcast

o all descending activities and/or actions when the transition occurs.

hese are conceptually similar to the Ready -to- Executing intrusions ex-

ept that the role of the RepeatCondition s and Precondition s are reversed.

ote that an activity post-repetition occurs when a RepeatCondition is

rue, but the activity has not yet reached its EndCondition . Also note that

n erroneous act with “pre-capture ” in its name indicates an erroneous

ehavior where a Precondition captures human attention in an inappro-

riate situation. All of the other erroneous restarts should be relatively

traightforward to interpret.

It is important to note that activity restarts can occur when an ac-

ivity has a repeat condition and when it does not. For example, for the

offee machine example, aPourWater (which has a repeat condition;

ee Fig. 4) could be performed with an activity completed, premature

estart, if the human repeats that activity even though enough water has

een added to the reservoir. Alternatively, an activity premature restart

ould occur for aBrewCoffee (Fig. 4 ; which does not have a RepeatCon-

ition) if the human erroneously restarts the activity any time during the

xecution of its sub-activities.

It is important to note that a previously executed activity can execute

gain. However, in our taxonomy, this will occur via activity done-to-

xecuting intrusions, not activity restarts.

ctivity Delays. Activities can also have delays. A Ready -to- Ready tran-

ition that occurs when an activity should normatively transition

rom Ready -to- Executing represents an activity start delay. Executing -to-

xecuting transitions (which do not broadcast a reset) can result in two

ifferent types of delays.

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Table 4

Action-level erroneous behaviors.

Divergence type Mode Point of divergence Transition condition Erroneous behavior type

Transition Intrusion Ready -to- Executing ¬StartCondition Action Intrusion

Done -to- Executing StartCondition Action Reset Intrusion

¬StartCondition Action Spurious Reset Intrusion

Omission Ready -to- Done StartCondition Action Omission

Executing -to- Done ¬EndCondition Action Premature Finish

Delay Ready -to- Ready StartCondition Action Start Delay

Executing -to- Executing EndCondition Action Finish Delay

Divergence type Mode Point of divergence Assignment Erroneous behavior type

Execution Substitution SetValue CorrectAction ≔ IncorrectValue Action Value Substitution

IncorrectAction ≔ CorrectValue Action Target Substitution

Misremembrance Local Variable Assignment CorrectVariable ≔ IncorrectValue Value Misremembrance

IncorrectVariable ≔ CorrectValue Target Misremembrance

Note. Each erroneous behavior type in the top part of the table satisfies the associated erroneous transitions in Fig. 6 (a). Underlines are used to

show where in a transition condition or a variable assignment a deviation from normative occurs.

(

a

a

p

F

E

c

a

t

t

a

t

o

i

w

t

r

n

a

R

A

b

t

H

t

a

E

t

w

t

t

o

i

C

o

f

t

h

w

t

o

n

r

n

w

r

a

A

e

fi

F

m

s

r

d

a

d

c

c

3

f

e

s

a

s

m

v

s

l

r

t

d

i

t

c

i

v

t

o

(

P

v

f

p

If the human does not complete the activity when he or she should

when the conditions for an Executing -to- Done transition are true), an

ctivity finish delay occurs. Such a condition could occur in a number of

ctivities in our coffee machine application. For example, if the human

auses after lifting the handle of the machine (aLiftHandle ; in either

ig. 4 or Fig. 5), this would constitute an activity finish delay.

If the human does not perform a true repetition (an Executing -to-

xecuting transition with a reset), an activity repeat delay occurs. In the

offee machine, this could occur if the person stops or pauses while

dding water to the reservoir (aPourWater ; Fig. 4) before enough wa-

er has been added.

Note that a comparable delay for a Done activity (an erroneous Done -

o- Done transition) is not included in our taxonomy. This is because such

 transition would be an artifact of the finite state machine representa-

ion: a human does not think about an activity or action being reset (the

nly way to transition out of Done) and thus a delay on a reset transition

s artificial. Further, the only way an erroneous Done -to- Done transition

ould impact the performance of human behavior is if a human fails

o perform the given activity or action after its parent activity has been

eset and is executing. Such behavior would occur because the person is

ot properly attending to the conditions indicating when that activity or

ction should be performed and is thus encapsulated by the erroneous

eady -to- Done transitions.

ction-Level Transition-Based Erroneous Behaviors. Erroneous transition-

ased behavior can also occur at the action level. As with the activity

ransitions, these can be refined based on the property that is violated.

owever, because actions do not have strategic knowledge conditions,

here are fewer transition-based erroneous behaviors at this level. These

re shown in the upper half of Table 4 .

An action intrusion occurs when an action transitions from Ready to

xecuting at the wrong time (when the human fails to properly attend

o the StartCondition). A Done -to- Executing action reset intrusion occurs

hen the person performs an action that is Done , but has its StartCondi-

ion satisfied. An action spurious intrusion describes a condition where

his occurs when the action ’s StartCondition is not satisfied. An action

mission occurs when an action transitions from Ready to Done when

t is the correct time to transition from Ready to Executing (the Start-

ondition is true). An action premature finish (a special type of action

mission) occurs when an action transitions from Executing to Done be-

ore the action ’s EndCondition is true. An action start delay occurs when

he activity transitions from Ready -to- Ready when it normatively should

ave transitioned from Ready -to- Executing . An action finish delay occurs

hen the activity transitions from Executing -to- Executing when it norma-

ively should have transitioned from Executing -to- Done . Every action in

ur coffee machine application could be used to illustrate these erro-

eous behaviors.
114
The action-level (Table 4) behaviors do not explicitly account for

epetition. This is because, for an action to finish and then repeat, it

eeds to transition to Done . A direct Executing -to- Executing transition

ould thus not register the completion of the action. As such, action

epetition is encapsulated by an action reset intrusion, where this occurs

fter the action transitions from Executing to Done .

dditional Transition-based Considerations. It is important to note that

ach of the transition-based erroneous behavior types can be further re-

ned based on which part of the violated condition was not attended to.

or example, a human may perform an action intrusion, where the ele-

ents in the StartCondition that are violated are related to the execution

tate of the action ’s siblings (the other actions in the decomposition)

ather that the execution state of the parent (the activity the actions

ecomposes from). In this situation, erroneous behavior will result in

ctions being executed in the wrong order or instead of another action,

epending on the activity ’s decomposition operator. Similar distinctions

an be made for all other errors and condition types. This is further dis-

ussed in Section 4 .

.3.2. Execution-based erroneous behaviors

The transition-based, action-level erroneous behaviors can account

or people doing the wrong action or omitting the correct action. How-

ver, when an action involves the conveyance of information beyond

imple performance (as is done for SetValue actions and local variable

ssignments), there are additional deviations that can occur in the as-

ignment process. These are shown in the bottom of Table 4 .

These execution-based erroneous behaviors are separated into two

odes. A substitution is associated with SetValue actions (the point of di-

ergence) and represents part of an action ’s value conveyance being sub-

tituted with something correct. A misremembrance is associated with

ocal variable assignments (the point of divergence). It models a person

emembering something partially wrong when performing a mental ac-

ion. The erroneous behavior types within each of these designations are

istinguished based on whether the target (the action or local variable)

s incorrect or the value assigned to it is incorrect. Note that a condi-

ion where both are wrong is still possible in the larger taxonomy. This

an occur either through an intrusion or through the combination of an

ntrusion and an action omission.

For substitutions, the human can perform an action where they con-

ey the wrong value through the correct action (an action value substi-

ution). In the coffee machine example, this could occur by the human

perator placing something other than a coffee pod into the machine

performing an action value substitution for hEnterPod under aEnter-

od in Fig. 4). If the person performs the wrong action, but the right

alue, this is called an action target substitution. For the coffee machine,

or the same place in the task, this could occur if the human operator

laced the coffee pod somewhere other than in the machine.

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

a

m

t

a

p

3

I

g

a

b

k

4

a

t

o

d

a

n

4

w

p

n

4

P

e

i

a

C

r

i

r

e

b

t

a

t

a

D

n

t

d

D

t

R

a

s

P

f

a

e

p

a

D

n

a

t

O

p

t

a

i

J

t

b

o

a

t

J

p

a

b

s

D

p

R

s

w

s

a

i

E

a

f

I

a

t

f

t

c

e

t

D

a

4

S

o

t

s

i

o

e

J

(

a

P

a

a

d

t

a

Analogues for these can also occur for misremembrances (local vari-

ble assignments). Someone can remember the wrong thing (a value

isremembrance) or remember the right thing in the wrong context (a

arget misremembrance). However, because there are no local variable

ssignments in the coffee machine tasks, there are not illustrative exam-

les of misremembrances for the application.

.4. Summary

Fig. 7 provides an overview of the hierarchy used in our taxonomy.

t is worth noting that although each of these categories is general, any

iven erroneous behavior that actually occurs will be associated with

 specific activity or action. Thus, additional context and insights can

e had by considering the behaviors being performed and any strategic

nowledge that factored into the erroneous behavior.

. Inter-taxonomy compatibility

Our new taxonomy is intended to encompass both phenomenological

nd genotypical erroneous behavior concepts. To assess this, we show

hat our taxonomy achieves coverage over both Hollnagel ’s phenotypes

f erroneous action (1993) and slips from Reason ’s GEMS (1990) . We

o this by going through all of the designations of the other taxonomies

nd showing how each of their classifications is accounted for in the

ew system.

.1. Phenotypes of erroneous action

Hollnagel ’s phenotypes of erroneous action (1993) were concerned

ith how erroneous behaviors manifest as deviations from a normative

lan or task. Thus, the discussion below describes how each of Holl-

agel ’s phenotypes can manifest using our taxonomy.

.1.1. Zero-order phenotypes

remature Start. A premature start occurs when an action starts too

arly (Hollnagel, 1993). In our taxonomy, premature starts can occur

n several ways. At the action level, a premature start can occur when

 person performs an action intrusion right before the action ’s Start-

ondition is true. However, a premature start can also occur for similar

easons at the activity level if a human performs an activity capture

ntrusion right before the activity ’s StartCondition is satisfied. This can

esult in one or more of the actions that the activity decomposes into

xecuting prematurely. Alternatively, timing constraints can potentially

e asserted into an activity ’s Precondition or RepeatCondition . If this is

he case and a human does not properly attend to these elements of an

ctivity ’s Precondition or RepeatCondition , he or she may perform an ac-

ivity premature intrusion; an activity premature, repeat intrusion; an

ctivity premature restart; or an activity premature pre-capture restart.

elayed Start. A delayed start describes occurs where an action does

ot start when it is supposed to (Hollnagel, 1993). In the new taxonomy,

his can occur when the human fails to start the execution of an action

ue to improperly attending to the StartCondition , an action start delay.

elays at the activity level can also occur. A human may fail to attend

o the conditions when an activity should normatively transition from

eady -to- Executing and perform an activity start delay. A human may

lso fail to attend to the conditions associated with when the activity

hould normatively repeat and perform an activity repeat delay.

remature Finish. A premature finish occurs when an action finishes be-

ore it should (Hollnagel, 1993). In our taxonomy, this manifests as an

ction premature finish. An action can also finish prematurely if its par-

nt activity finishes before it should. Thus, premature finishes can hap-

en if any of the activity Executing -to- Done omissions occur while an

ction is executing.
115
elayed Completion. A delayed completion occurs when an action does

ot finish when it is supposed to (Hollnagel, 1993). This is replicated by

n action finish delay, where the human does not stop executing when

he EndCondition is satisfied.

mission. An omission occurs when the human does not perform a

lanned action (Hollnagel, 1993). This is replicated directly by an ac-

ion omission in the new taxonomy. Action omissions can also occur if

ny activity-level omission occurs before the activity has executed all of

ts required actions.

ump Forward. A jump forward involves a human performing an action

hat occurs later in a plan (Hollnagel, 1993). At the action level, this can

e represented by an action intrusion, as long as the action is one that

ccurs later in the given activity or task. A jump can also occur for an

ctivity via any Ready -to- Executing intrusion as long as the activity is in

he same task as the normative action/activity.

ump Backward. A jump backward occurs when a human performs a

reviously completed action (Hollnagel, 1993). In our taxonomy, a Done

ction or activity is one that was previously performed. Thus, a jump

ackward can be represented by an action reset intrusion or an action

purious reset intrusion. Similarly, a jump backward can occur for any

one -to- Executing activity intrusion, as long as the resulting actions were

erformed in the previous execution of the activity.

epetition. A repetition occurs when a human repeats the action he or

he just performed (Hollnagel, 1993). In the new taxonomy, this occurs

hen either an action reset intrusion or an action spurious reset intru-

ion occurs right after the completion (Executing -to- Done) of that same

ction. A repetition can also happen if an activity only has one action

n its decomposition and any activity restart (erroneous Executing -to-

xecuting transitions with reset) happens after the completions of the

ctivity ’s action or if the just finished activity erroneously transitions

rom Done -to- Executing .

ntrusion. An intrusion occurs when a human performs an unplanned

ction (Hollnagel, 1993). In our taxonomy, this can occur via an ac-

ion intrusion, where the action is not in the task currently being per-

ormed. At the activity level, action intrusions can occur for any Ready -

o- Executing intrusion where the activity that is intruded is not part of the

urrent executing task. It is important to note that this will inherently

xclude any intrusion where the StartCondition is satisfied (a StartCondi-

ion can only become true for an executing activity). It also excludes any

one -to- Executing intrusion because there would be no Done activities or

ctions in non-executing tasks.

.1.2. First-order phenotypes

purious Intrusion. A spurious intrusion is represented by multiple zero-

rder intrusions in sequence (Hollnagel, 1993). In the new taxonomy,

his can occur via a sequence of action intrusions, reset intrusions, or

purious reset intrusions. Any activity intrusions cannot be rightly qual-

fied under this designation because it would constitute the performance

f actions within a given activity that have a specific relationship with

ach other.

ump / Skip. A jump / skip occurs when a human skips multiple actions

 Hollnagel, 1993). This is represented in our taxonomy as a sequence of

ction omissions or an activity-level omission.

lace Losing. Place losing occurs when a human performs actions in an

rbitrary order (Hollnagel, 1993). In the new taxonomy, information

bout activity and action execution order is encoded into its StartCon-

ition . Thus, place losing behavior is replicated by multiple action in-

rusions or activity capture intrusions during the execution of a parent

ctivity that encapsulates the activities or actions.

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

Fig. 7. Summary of erroneous behavior classifications using the new taxonomy.

116

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

R

p

t

s

v

i

S

a

t

t

t

C

t

1

l

b

d

t

a

t

i

c

i

c

t

R

a

H

i

n

t

f

T

t

p

1

l

b

fi

e

b

4

a

O

t

t

s

n

w

r

W

o

o

s

r

n

e

f

l

o

s

m

s

4

o

s

t

a

4

D

t

p

(

i

w

t

O

t

a

f

s

a

t

d

n

i

p

i

R

m

1

a

a

P

b

b

a

o

v

I

f

w

s

a

t

4

a

o

(

O

a

a

ecovery. Recovery occurs when a human performs actions that were

reviously omitted (Hollnagel, 1993). In the new taxonomy, the fact

hat acts were previously omitted suggests that they will be in the Done

tate. Thus, recovery occurs when any activity or action that was pre-

iously omitted will transition from Done to Executing (any of the reset

ntrusions).

ide Tracking. Side tracking represents a situation when one part of an

ction plan is replaced with another (Hollnagel, 1993). In our taxonomy,

his would require the performance of one or more omissions (at either

he action or activity level) and then an activity-level intrusion, where

he intruding activity would be from another task.

apture. A capture occurs when a human performs part of another ac-

ion sequence in the wrong place though multiple intrusions (Hollnagel,

993). In our new taxonomy, this can be replicated by any activity-

evel intrusion. Hollnagel also discussed a special type of capture called

ranching, where the intruding action sequence would have started un-

er similar conditions to the normative sequence (Hollnagel, 1993). In

he new taxonomy, this corresponds with the activity intrusions that

re given “capture ” designations: activity repeat-capture intrusion; ac-

ivity completed, capture intrusion; activity completed, repeat-capture

ntrusion; activity repeat-capture, reset intrusion; activity completed,

apture, reset intrusion; and activity completed, repeat-capture, reset

ntrusion. These are appropriate for “branching ” because they represent

onditions where activity Precondition s or RepeatCondition s indicate that

he erroneous activity should be performed.

eversal. A reversal represents a situation where the execution of two

djacent actions is reversed (a combination of an omission and a jump;

ollnagel, 1993). In our taxonomy, this would be replicated by an action

ntrusion, where the intruding action is one that would have executed

ext. Note that because an action that has executed will be Done when

he activity would have normatively reached it. Thus, there is no need

or an additional erroneous behavior.

ime Compression. Time compression occurs when a sequence of ac-

ions occurs faster than they should through multiple premature starts,

remature finishes, and/or performing actions in parallel (Hollnagel,

993). In the new taxonomy, time compression would occur in a simi-

ar manner: through multiple action intrusions (where an action starts

efore the actions it should wait for are Done) and/or action premature

nishes. It is important to note that an action intrusion allows for the

rroneous parallel execution of actions given that restrictions on such

ehavior are encoded into action StartCondition s.

.1.3. Discussion

The above discussion shows that our taxonomy is able to account for

ll of the phenotypes of erroneous action identified by Hollnagel (1993) .

ur taxonomy thus covers the various phenotypes found in Hollnagel ’s

axonomy and encompasses the contained concepts.

For the vast majority of the phenotypes, there were multiple ways

hat the included behavior could be represented in our taxonomy. This

peaks to the capabilities of our method. Specifically, our taxonomy

ot only accounts for how the erroneous behavior manifested, but also

hy it occurred. Conversely, several first order phenotypes can only be

eplicated in our taxonomy through multiple erroneous behavior types.

hile this does not allow for elegant classifications of some of the first-

rder types in our taxonomy, this is not a major limitation. Specifically,

ur taxonomy is still able to replicate the observable behavior encap-

ulated by phenotypes. It is just that wedding the phenotypes to the

easons the violations occurred can require multiple error types.

Several specific erroneous behaviors from our new taxonomy are

ot addressed by Hollnagel ’s phenotypes. In particular, none of the

xecution-based erroneous behaviors are included. This is not surprising

or misremembrances because such behaviors are not observable. The
117
ack of substitution in Hollangel ’s phenotypes is a potentially more seri-

us issue. However, a convincing argument could be made that these

ubstitutions would be encapsulated by a zero-order intrusion. Ulti-

ately, the fact that the new taxonomy identifies this specific distinction

hows its enhanced specificity.

.2. GEMS slips

Slips in GEMS (Reason, 1990) all represent erroneous behavior that

ccur when the human knows what they should be doing, but fail to do

o because of a failure of attention. We discuss the relationship of our

axonomy to Reason ’s slips based on their association with inattention

nd over attention below.

.2.1. Inattention

ouble Capture Slip. A double capture slip occurs when a human ’s atten-

ion is captured by something else in the environment resulting in the

erson doing something different than what they were currently doing

 Reason, 1990). Our taxonomy encompasses this behavior with the var-

ous forms of activity “capture ” intrusions. Note that all of these meet

ith Reason ’s definition of a double capture slip because the Precondi-

ion or the RepeatCondition capture the human ’s attention.

mission Following an Interruption. An omission following an interrup-

ion can occur as a result of a person not attending to the task following

n external event (Reason, 1990). In the new taxonomy, this can occur

or any type of omission. However, it best matches activity level omis-

ions because it suggests that the distraction caused the person to fail to

ttend to the state of the task (encompassed by the activity ’s EndCondi-

ion) or the completeness of its goals (expressed in the CompletionCon-

ition). It is important to note that omissions in the new taxonomy do

ot explicitly account for the interruption. Rather, they enumerate what

nformation was not properly attended to. In the context of cognitive ex-

lanations, this is actually more utility than the presence of an external

nterruption.

educed Intentionality. Reduced intentionality takes place when the hu-

an loses track of his or her intentions in the middle of a task (Reason,

990). In our taxonomy, this is represented by a situation where an

ctivity erroneously transitions from Executing -to- Done , omitting sub-

ctivities or actions that should have been performed.

erceptual Confusion. Perceptual confusion occurs in tasks where some-

ody performs the correct action on the wrong target due to similarities

etween the wrong target and the correct target (Reason, 1990). These

re directly represented by action value substitutions in the new tax-

nomy. In these, the person performs the right action with the wrong

alue (an action value substitution).

nterference Errors. Interference errors happen when the human is per-

orming two or more tasks and inappropriately blends them together. As

ith perceptual confusion, this is represented by execution-based sub-

titutions and misremembrances. In this situation, the incorrect values,

ctions, or local variables would be values, actions, or variables from

he other task, respectively.

.2.2. Over attention

According to Reason (1990) , slips also occur because of mistimed

ttentional checks due to over attention. This can cause a human to

mit something (an omission), repeat something that was already done

a repetition), or reverse the order of steps in a sequence (a reversal).

ver attention can cause a human to incorrectly evaluate and/or ignore

ny of the conditions from a task model.

An omission is accounted for in our taxonomy through any of the

ctivity or action-level omissions.

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

E

c

s

t

f

H

a

b

i

r

4

p

a

a

w

n

c

i

l

m

o

o

5

m

t

i

w

t

h

o

r

G

a

o

b

c

e

w

t

t

d

e

l

t

c

i

t

z

a

t

p

c

T

a

1

h

1

f

t

a

s

b

p

i

5

a

e

t

o

a

o

c

u

f

i

w

s

E

t

t

g

t

5

(

o

p

d

t

i

v

c

d

i

a

(

o

i

l

w

c

f

s

t

c

h

i

5

m

b

e
Repetitions are included in our taxonomy via activity-level Done -to-

xecuting intrusions (if the activity has just finished executing) and spe-

ial circumstance of restarts (Executing -to- Executing transitions with re-

et; see Section 4.1.1). At the action level, a repetition can occur through

he Done -to- Executing action intrusions as long as it occurs immediately

ollowing the normative execution of that same action.

A reversal in our taxonomy occurs in the same way it would for

ollnagel ’s reversal (Section 4.1.2). Specifically, this occurs when an

ction intrusion happens where the erroneous action would normatively

e the one that executes after the current normative action.

In all of these, our taxonomy does not explicitly identify that a mist-

med check occurred. However, it does explicitly capture what condition

eceived the mistimed check.

.2.3. Discussion

As the analysis above shows, the new taxonomy is able to encom-

ass all of the slip behaviors and thus covers the failure modes associ-

ted with slips in Reason ’s GEMS. As with the phenotypes of erroneous

ction (discussed above), many of the slip designations are associated

ith multiple error types in the taxonomy. Because Reason ’s slip desig-

ations are informal and thus have many vagaries, our new taxonomy

an be seen as a useful extension of the original classification. While it

s true that our taxonomy does not always explicitly capture the higher-

evel reason for the error (i.e. a mistimed check), it does explicitly enu-

erate what information was not attended to properly. Thus, our tax-

nomy provides additional insights into how the erroneous behavior

ccurred.

. General discussion

In this work, we have introduced a new taxonomy of erroneous hu-

an behavior that classifies erroneous acts based on where and how

hey deviate from normative behavior expressed in task models. By link-

ng erroneous behavior modes and/or the specific activities and actions

ith the information the human improperly attended to in the seman-

ics of the task, our taxonomy links the phenotype of the erroneous be-

avior with its genotype (the cognitive slip). Our taxonomy is capable

f accounting for the different classifications in the phenotypes of er-

oneous action (Hollnagel, 1993) as well as the skill-based slips from

EMS (Reason, 1990). Because these are the leading phenomenological

nd genotypical erroneous behavior classifications respectively, our tax-

nomy should be expressive enough to represent most erroneous human

ehaviors that occur when humans are performing task work. In some

ircumstances, our approach provides additional precision by explicitly

numerating why a particular erroneous phenotype occurred or exactly

hat information the person failed to attend to in committing a slip,

hus showing that has additional expressive power beyond the original

axonomies.

Many of the categories of the legacy taxonomies such as reason ’s

ouble-capture slips and Hollnagel ’s delays naturally arose from the

rroneous sematic transitions in our taxonomy. This speaks to the va-

idity of the new taxonomy. This is further supported by the fact that

he new taxonomy encapsulated erroneous behavior types, such as post-

ompletion errors (represented as an activity post-completion omission

n our taxonomy), that have gained importance in the larger human fac-

ors literature (Bastide and Basnyat, 2007; Byrne and Bovair, 1997; Cur-

on and Blandford, 2004; Li et al., 2005). In fact, the taxonomy identifies

 number of new and/or precise erroneous behavior types including ac-

ivity completed intrusions; activity repeat-capture intrusions; activity

ost-repetitions; activity premature, pre-capture restarts; activity non-

ompletions; and many different combinations of these and other types.

his suggests that some or all of these special types may be deserving of

dditional study in future research.

The phenotypes of erroneous action are formally precise (Hollnagel,

993). However, by design, they lack information about the factors that

elped contribute the error. Conversely, the slips in GEMS (Reason,
118
990) do provide information about these factors, but do so without any

ormal precision. Thus, our new taxonomy makes a significant contribu-

ion by connecting the phenomenological and genotypical elements of

n erroneous behavior and doing so in a formal, unambiguous way. This

hould allow for additional precision in the study of erroneous human

ehavior moving forward.

Even with these contributions, the taxonomy could make further im-

act through future developments and applications. These are explored

n the discussion below.

.1. No-error perspective and the systemic contribution

The contemporary view of erroneous human behavior is that it is

 result of system problems rather than the cause of problems (Cook

t al., 1998; Dekker, 2002; Hollnagel, 1983). Our taxonomy is meant

o be compatible with this perspective. Specifically, the taxonomy seeks

nly to classify why and how human behavior can diverge from task

nalytic behavior models. It does not mean to assign fault to the human

perator even if he or she failed to attend to a specific part of the task or

ondition in the environment. In fact, the taxonomy can potentially be

sed as a stepping-stone towards understanding what specific systemic

actors contributed to erroneous human behavior. Specifically, identify-

ng exactly what information was not attended to, or what information

as erroneously attended to, gives analysts insights into exactly what

ystem conditions were present when the erroneous behavior occurred.

ngineers could use this information to modify system behavior to avoid

he associated erroneous acts. The fact that the specific violations within

ask model conditions provide insights into an erroneous behavior sug-

ests that additional categorical refinements could be applied to our

axonomy. This is explored in the next section.

.2. Additional categories

Erroneous behavior is classified hierarchically in our taxonomy

 Fig. 7). This is advantageous because it allows analysts to use the tax-

nomy at whichever level is most useful for their purpose. As discussed

reviously, the erroneous behavior types can be further refined to ad-

ress erroneous behaviors that arise when a person does not properly at-

end to specific parts of conditions. Such refinements were not included

n the presented version of the taxonomy because the specific parts of

iolated conditions will be very specific to a given task or environmental

ondition under which a task occurs. The specific parts of implicit con-

itions (StartCondition s, EndCondition s, and Reset s) that are violated will

ndicate exactly what part of a task ’s execution state was not properly

ttended to. The specific parts of explicit strategic knowledge conditions

 Precondition s, RepeatCondition s, and CompletionCondition s) that are vi-

lated will indicate exactly what environmental conditions (based on

nput variables used in the condition) or memory conditions (based on

ocal variables in the condition) were not attended to correctly. Future

ork should investigate if there are ways of refining the taxonomy to

ategorize such erroneous behaviors in ways that are useful to human

actors engineers.

In the comparison of the legacy taxonomies to our new one, there are

ome situations where multiple erroneous behavior types are required

o replicate concepts from single classifications. This suggests that there

ould be utility in identifying specific groupings of our erroneous be-

avior types to represent these behaviors. This should be investigated

n future work.

.3. Recovery behavior

Recovery behavior, where a human recognizes that he or she has

ade an erroneous behavior and attempts to account for it, can often

e just as critical to system safety as the initiating erroneous act (Woods

t al., 2010). Because recovery behaviors deviate from normative tasks,

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

t

h

o

B

t

i

D

r

n

i

t

A

5

c

W

T

s

l

d

c

d

a

w

m

w

b

fi

d

l

n

s

a

n

5

H

w

h

d

u

G

k

c

t

h

l

K

e

t

i

b

o

u

m

r

a

2

s

s

t

5

o

S

i

F

p

T

o

e

p

t

f

5

o

H

e

i

(

e

“

(

s

a

p

B

(

o

n

(

b

u

f

e

5

p

p

a

a

5

u

a

i

a

f

C

m

b

e

t

m

p

5

fi

m
hey can be considered erroneous (Hollnagel, 1993). However, such be-

avior is not inherently accounted for in most erroneous behavior tax-

nomies (Jones, 1997) including GEMS (Reason, 1990). We know from

igelow et al. (2011) that recovery behaviors manifest as task back-

racking, restarting, resumption, or abandonment. All of these behav-

ors can be accounted for in our taxonomy. Backtracking occurs as any

one -to- Executing (reset) intrusion. Restarting manifests as any activity

estart. Resumption occurs when a human resumes performing a task

ormatively after committing any erroneous behavior. Abandonment

s encompassed by any activity Executing -to- Done omission. Thus, our

ask-based taxonomy is able to account for human recovery behavior.

s such, it represents a more complete taxonomy.

.4. Workarounds

Workarounds are human behaviors that occur when people en-

ounter problems and find new ways to accomplish task goals.

orkarounds can be both an advantage and disadvantage to a system.

he possibility of working around a problem can increase system re-

iliency (Halbesleben et al., 2008), but also produce unexpected prob-

ems (Spear and Schmidhofer, 2005). Workarounds are not explicitly ad-

ressed in the new taxonomy. However, this does not mean that they are

ompletely incompatible. If specific workarounds are common in a given

omain, then a good task analysis should be capable of identifying them

nd working them into task models. In this situation, the workarounds

ould be normative behavior. If workaround behavior is not in the nor-

ative task model, then various intrusions should be able to capture

orkaround behavior. This would especially be true if the workaround

ehavior was a synthesis of other task behaviors. However, such a classi-

cation does not inherently capture the fact that workarounds are being

eveloped and/or pursued. Thus, if the workaround behavior is learned

ater in the life of a system or developed by a human in response to

ovel situations, then the behavior would fall under what Reason clas-

ified as rule- or knowledge-based mistakes. These erroneous behaviors

re not addressed by our taxonomy. We discuss this topic in more depth

ext.

.5. Other cognitive considerations

Our taxonomy is compatible with slips from Reason ’s GEMS (1990) .

owever, as discussed in Section 4.2 , our taxonomy only accounts for

hy an erroneous behavior occurred based on what information the

uman operator failed to properly attend to. It does not specifically

escribe higher levels of classifications that relate to why the partic-

lar failures of attention could occur (such as distraction). Further,

EMS accounts for erroneous behaviors that occur at the rule-based and

nowledge-based levels (mistakes). This exclusion was intentional be-

ause both types of mistakes occur when the human does not know how

o perform a given task. Rule-based mistakes occur when the human

as learned to do something wrong (has the wrong rule) or has prob-

ems remembering how to do the procedure at the time of execution.

nowledge-based mistakes relate to logical fallacies, incomplete knowl-

dge, or limitations on other available information. In this context, our

axonomy would have little relevance for erroneous behaviors that man-

fest at the knowledge level. However, for situations where rule-based

ehavior can be effectively coded into task analytic models, our taxon-

my could provide some relevance. In the extended literature on the

se of formal verification of human-interactive systems, erroneous hu-

an behaviors have been derived from skill and rule-based behaviors

epresented in formal representations of cognitive architectures (Curzon

nd Blandford, 2004; Curzon et al., 2007; Ruk šėnas et al., 2009a, 2007,

009b). This suggests rule-based mistakes and high classifications of

kill-based slips could be reconciled with our taxonomy. Future work

hould investigate how our method could be adapted to account for

hese classifications.
119
.6. Generalizability

EOFM, the task analytic modeling system around which the new tax-

nomy is based, is unique within the formal task model community.

pecifically, EOFM is automata-based while other common task model-

ng formalisms such as CTT (Paternò et al., 1997) and the system used by

ields (2001) are based on process algebras. While they have similar ex-

ressive power, automata and process algebras are definitely different.

hus, it is not clear whether the classifications contained in our taxon-

my will be easily translated to other process-algebra-based task mod-

ls. However, EOFM and these other languages have similar expressive

ower. Thus, it does seem like it is possible to reconcile the task-based

axonomy with these other task models. This should be the subject of

uture work.

.7. Cognitive work analysis

Hierarchical task models, like those used as the basis for our tax-

nomy, are widely used in the human factors engineering community.

owever, these models are not without their critics. In particular, mod-

ls like EOFM are “instruction-based ” approaches. These work well

n situations where people have well defined plans or what Vicente

1999) would call “closed ” systems. However, they do not give work-

rs very much flexibility or discretion when interacting with a complex

open ” system (Vicente, 1999). As such, cognitive work analysis (CWA)

 Vicente, 1999) has been defined as a method for characterizing the con-

traints on human work in a way that is appropriate for both “closed ”

nd “open ” systems. Extensive work has gone into developing this ap-

roach and adapting it for use in a number of domains (Bisantz and

urns, 2008), including work within the formal methods community

 Masci et al., 2011; Wright et al., 2000). Ultimately, there are trade-

ffs between CWA and task analysis (Salmon et al., 2010), and they are

ot necessarily incompatible. While CWA can capture more information

at higher levels abstraction), task analysis is more detailed. Ultimately,

ecause task analysis is more widely used, our taxonomy should have

tility in the human factors community. This is further bolstered by the

act that task analysis can be used in a number of other analyzes (Salmon

t al., 2010). This is explored next.

.8. Application areas and use in analyzes

A taxonomy inherently has intellectual value if it provides a unique

erspective on a subject, something we believe our taxonomy accom-

lishes. However, our task-based erroneous human behavior taxonomy

lso has the potential to have impact through its use in a number of

pplication areas. We explore several of these below.

.8.1. Erroneous behavior tracking at runtime

The phenotypes of erroneous behavior were originally intended for

se in monitoring to identify erroneous behavior at runtime (Hollnagel

nd Marsden, 1996). Such functionality can be used as the basis for

ntelligent decision support systems (Guerlain et al., 1999; Hollnagel

nd Marsden, 1996). There is also precedence for creating monitors

or tracking human task behavior at runtime (Bushman et al., 1993;

hu et al., 1995; Thurman et al., 1998). As such, the taxonomy enu-

erated here should be readily adaptable to the detection of erroneous

ehavior at runtime. Because our taxonomy contextualizes the actual

rroneous behavior manifestation with environmental information con-

ained in strategic knowledge conditions, it should provide more infor-

ation than simply detecting and identifying the behavior ’s erroneous

henotype.

.8.2. Accident analysis and reporting

GEMS has served as the basis for erroneous human behavior classi-

cation in accident analyzes and event reporting. This includes the Hu-

an Factors Analysis and Classification System (which is generic but

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

p

Z

G

r

i

n

t

a

p

a

2

w

5

c

e

H

a

i

f

(

d

a

2

W

c

m

d

o

a

t

o

5

o

o

i

T

a

e

s

t

n

h

e

p

5

a

o

b

(

h

b

p

i

e

c

f

(

k

n

a

t

t

n

h

v

b

a

f

6

e

n

i

p

c

p

n

h

p

a

h

t

a

A

0

o

R

A

A

R

B

B

B

B

B

B

B

B

B

B

B

B

B

B
redominately used in aviation; Shappell and Wiegmann, 2000) and

hang et al. ’s cognitive taxonomy of medical errors (Zhang et al., 2004).

iven that our taxonomy adds additional precision to the skill-level er-

oneous behaviors of these systems and the precedence task models have

n accident analysis (Doytchev and Szwillus, 2009; Hollnagel, 1998), our

ew taxonomy could be used in accident analysis and reporting. Further,

he fact that our taxonomy uses formal models of human operator tasks

nd provides formal descriptions of erroneous human behaviors should

otentially make it compatible with techniques for formally modeling

nd reasoning about accidents (Johnson, 1997; Johnson and Holloway,

003; Johnson and Telford, 1996). This should be investigated in future

ork.

.8.3. Human reliability analysis

Because the model presented here is a taxonomy, it only strives to

lassify erroneous human behavior, not address the plausibility of differ-

nt behaviors. This is purview of human reliability analyzes ([Bell and

olroyd, 2009]). Human reliability analyzes attempt to qualitatively

nd/or quantitatively assess the probability of erroneous human behav-

or. There are a number of such techniques including THERP (technique

or human error-rate prediction; Swain and Guttmann, 1983); CREAM

cognitive reliability and error analysis method; Hollnagel, 1998); the

ata entry error rate prediction method developed by Cauchi (2013) ;

nd the HAZOP-like techniques such as THEA (Pocock et al., 2001a;

001b) and the approach explored by Paternò and Santoro (2002) .

hile all of these techniques have different underlying theories and pro-

edures for estimating error rates (i.e. historical data, cognitive control

odes, brainstorming activities), they are similar in that they consider

eviations from human operator tasks. Because our taxonomy is based

n systematic deviations from normative task models, it should provide

 good framework around which to assess human reliability. Thus, fu-

ure work should investigate how our taxonomy can be integrated into

r help extend existing human reliability analyzes.

.8.4. System design

User-centered design is a framework for designing human-computer

r human-machine interfaces so that they always support the human

perators ’ tasks (Vredenburg et al., 2002). Erroneous human behav-

or is an extremely important consideration in user-centered design.

his is because designers want to design interfaces that prevent or

void certain erroneous acts and reduce the likelihood of others (Rizzo

t al., 1996). The task-based nature of our erroneous behavior taxonomy

hould make it compatible with user-centered design. The connection

he taxonomy provides between the phenotype and genotype of erro-

eous acts should facilitate designs that both prevent them and help

umans avoid the associated cognitive failures. Future research should

xplore how our taxonomy can be integrated into user-centered design

ractices.

.8.5. Simulation and formal verification

Task analytic models have been used in model-based analyzes such

s simulation and formal verification to assess the safety and reliability

f human-interactive systems both with and without erroneous human

ehavior (see Bolton et al., 2013). In particular, Bastide and Basnyat

2007) and Fields (2001) showed how patterns of erroneous human be-

avior, mostly based on the phenotypes of erroneous behavior, could

e manually used to modify normative human task behavior. The im-

act this behavior has on system performance can then be assessed us-

ng simulation and/or formal verification analyzes. Conversely, Bolton

t al. have explored how erroneous human behavior can be automati-

ally generated from task models by systematically considering the per-

ormance of erroneous phenotypes during the performance of actions

 Bolton et al., 2012), slips caused by attentional failures to strategic

nowledge (Bolton and Bass, 2013), miscommunications in commu-

ication protocols (Bolton, 2015), and the combination of all of the

bove (Pan and Bolton, 2016). Although based on similar foundations,
120
he erroneous behavior taxonomy discussed here is far more complete

han any of these other analyzes, even in combination. As such, the

ew taxonomy should be capable of being used to generate erroneous

uman behavior in simulation and formal verification analyzes. By

irtue of its completeness, an erroneous behavior generation technique

ased on the taxonomy should help analysts evaluate system safety at

 level that was previously not possible. This should be investigated in

uture work.

. Conclusions

By unifying the phenomenological and genotypical perspectives on

rroneous human behavior, our task-based taxonomy constitutes a sig-

ificant contribution. As we have shown, this new taxonomy is compat-

ble with the two leading erroneous behavior taxonomies and thus sup-

orts the different classifications they encompass. In addition to organi-

ally accounting for common erroneous behaviors (such as capture and

ost-completion errors), our taxonomy identifies a number of new erro-

eous behavior types that should be given consideration by the larger

uman factors community. Finally, the fact that the taxonomy is com-

atible with the legacy system and contextualizes erroneous behaviors

round task analytic models makes it compatible with many facets of

uman factors engineering and analysis. As such, the true impact of the

axonomy on system safety and usability will be realized as it is adopted

nd incorporated into these different practices.

cknowledgments

The work presented here was supported by grant W911NF-15-1-

474 “Young Investigator Program (8.5): Preventing Complex Failures

f Human Interactive Systems with Erroneous Behavior Generation and

obust Human Task Behavior Patterns ” by the Army Research Office /

rmy Research Lab. The author would like to thank Kylie Molinaro and

dam Houser for their help in the preparation of this manuscript.

eferences

astide, R. , Basnyat, S. , 2007. Error patterns: systematic investigation of deviations in task

models. In: Task Models and Diagrams for Users Interface Design. Springer, Berlin,

pp. 109–121 .

ell, J. , Holroyd, J. , 2009. Review of Human Reliability Assessment Methods. Technical

Report, RR679. Health and Safety Executive, Norwich .

igelow, M. , Christmann, C. , Feigh, K. , Prichett, A. , Kannan, S. , Kim, S.-Y. , Lee, G. , 2011.

WMC. Technical Report. GA Tech, Atlanta .

isantz, A.M. , Burns, C.M. , 2008. Applications of Cognitive Work Analysis. CRC Press,

Boca Raton .

olton, M.L. , 2015. Model checking human–human communication protocols using task

models and miscommunication generation. J. Aerosp. Inf. Syst. 12 (7), 476–489 .

olton, M.L. , Bass, E.J. , 2008. Formal modeling of erroneous human behavior and its

implications for model checking. In: Proceedings of the Sixth NASA Langley Formal

Methods Workshop. NASA Langley Research Center, Hampton, pp. 62–64 .

olton, M.L. , Bass, E.J. , 2013. Generating erroneous human behavior from strategic knowl-

edge in task models and evaluating its impact on system safety with model checking.

IEEE Trans. Syst. Man Cybern. 43 (6), 1314–1327 .

olton, M.L., Bass, E.J., 2017. Enhanced Operator Function Model (EOFM): A Task Ana-

lytic Modeling Formalism for Including Human Behavior in the Verification of Com-

plex Systems. In: Weyers, B., Bowen, J., Dix, A., Palanque, P. (Eds.), The Handbook of

Formal Methods in Human-Computer Interaction. Springer International Publishing,

Cham, pp. 343–377. doi: 10.1007/978-3-319-51838-1_13 .

olton, M.L. , Bass, E.J. , Siminiceanu, R.I. , 2012. Generating phenotypical erroneous hu-

man behavior to evaluate human-automation interaction using model checking. Int.

J. Hum. Comput. Stud. 70 (11), 888–906 .

olton, M.L. , Bass, E.J. , Siminiceanu, R.I. , 2013. Using formal verification to evaluate

human-automation interaction in safety critical systems, a review.. IEEE Trans. Syst.

Man Cybern. 43 (3), 488–503 .

olton, M.L. , Siminiceanu, R.I. , Bass, E.J. , 2011. A systematic approach to model check-

ing human-automation interaction using task-analytic models. IEEE Trans. Syst. Man

Cybern. Part A 41 (5), 961–976 .

olton, M.L., Zheng, X., Molinaro, K., Houser, A., Li, M., 2016. Improving the scalability

of formal human–automation interaction verification analyzes that use task-analytic

models. Innov. Syst. Softw. Eng . DOI: 10.1007/s11334-016-0272-z.

ushman, J.B. , Mitchell, C.M. , Jones, P.M. , Rubin, K.S. , 1993. ALLY: an operator ’s asso-

ciate for cooperative supervisory control systems. IEEE Trans. Syst. Man Cybern. 23

(1), 111–128 .

yrne, M.D. , Bovair, S. , 1997. A working memory model of a common procedural error.

Cogn. Sci. 21 (1), 31–61 .

http://dx.doi.org/10.13039/100000183
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0002
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0003
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0004
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0005
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0005
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0006
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0007
http://dx.doi.org/10.1007/978-3-319-51838-1_13
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0009
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0010
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0011
http://10.1007/s11334-016-0272-z
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0013
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0014

M.L. Bolton Int. J. Human-Computer Studies 108 (2017) 105–121

C

C

C

C

C

C

D

D

D

F

F

G

G

H

H

H

H

H

J

J

J

J

K

K

K

K

L

L

L

L

M

M

M

M

N

N

O

P

P

P

P

P

P

R

R

R

R

R

R

S

S

S

S

S

S

T

V

V

W

W

Z
auchi, A. , 2013. Using differential formal analysis for dependable number entry. In: Pro-

ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing

Systems. ACM, pp. 155–158 .

hu, R.W. , Mitchell, C.M. , Jones, P.M. , 1995. Using the operator function model and

OFMspert as the basis for an intelligent tutoring system: towards a tutor/aid paradigm

for operators of supervisory control systems. IEEE Trans. Syst. Man Cybern. Part A 25

(7), 1054–1075 .

ook, R.I. , Woods, D.D. , Miller, C. , 1998. A Tale of Two Stories: Contrasting Views of

Patient Safety. Technical Report. National Health Care Safety Council of the National

Patient Safety Foundation at the AMA .

ooley, M. , 2000. Human-centered design. Inf. Des. 59–81 .

urzon, P. , Blandford, A. , 2004. Formally justifying user-centered design rules: a case

study on post-completion errors. In: Proceedings of the 4th International Conference

on Integrated Formal Methods. Springer, Berlin, pp. 461–480 .

urzon, P. , Ruk šėnas, R. , Blandford, A. , 2007. An approach to formal verification of hu-

man-computer interaction. Formal Aspects Comput. 19 (4), 513–550 .

ekker, S.W.A. , 2002. The Re-invention of Human Error. Technical Report, 2002-01. Lund

University School of Aviation, Ljungbyhed, Sweden .

oytchev, D.E. , Szwillus, G. , 2009. Combining task analysis and fault tree analysis for

accident and incident analysis: a case study from Bulgaria. Accid. Anal. Prev. 41 (6),

1172–1179 .

unjó, J. , Fthenakis, V. , Vílchez, J.A. , Arnaldos, J. , 2010. Hazard and operability (HAZOP)

analysis. a literature review. J. hazard. Mater. 173 (1), 19–32 .

ields, B. , Harrison, M. , Wright, P. , 1997. THEA: Human Error Analysis for Requirements

Definition. Technical Report. York .

ields, R.E. , 2001. Analysis of Erroneous Actions in the Design of Critical Systems. Uni-

versity of York, York Ph.D. thesis .

iese, M. , Mistrzyk, T. , Pfau, A. , Szwillus, G. , von Detten, M. , 2008. AMBOSS: a task mod-

eling approach for safety-critical systems. In: Proceedings of the Second International

Conference on Human-Centered Software Egnineering. Springer, Berlin, pp. 98–109 .

uerlain, S.A. , Smith, P.J. , Obradovich, J.H. , Rudmann, S. , Strohm, P. , Smith, J.W. , Svir-

bely, J. , Sachs, L. , 1999. Interactive critiquing as a form of decision support: an em-

pirical evaluation. Hum. Factors 41 (1), 72–89 .

albesleben, J.R. , Wakefield, D.S. , Wakefield, B.J. , 2008. Work-arounds in health care

settings: literature review and research agenda. Health Care Manage. Rev. 33 (1),

2–12 .

ollnagel, E. , 1983. Position paper on human error. In: NATO Conference on Human Error.

Bellagio, Italy .

ollnagel, E. , 1993. The phenotype of erroneous actions. Int. J. Man Mach. Stud. 39 (1),

1–32 .

ollnagel, E. , 1998. Cognitive Reliability and Error Analysis Method (CREAM). Elsevier,

Amsterdam .

ollnagel, E. , Marsden, P. , 1996. Further Development of the Phenotype Genotype Classi-

fication Scheme for the Analysis of Human Erroneous Actions. Technical Report, EUR

16463 EN. European Commission .

ohnson, C.W. , 1997. The epistemics of accidents. Int. J. Hum. Comput. Stud. 47 (5),

659–688 .

ohnson, C.W. , Holloway, C.M. , 2003. Strengths and weaknesses of logic formalisms

to support the causal analysis of mishaps. In: Proceedings of the 21st Interna-

tional System Safety Conference. International Systems Safety Society, Unionville,

pp. 1133–1142 .

ohnson, C.W. , Telford, A.J. , 1996. Extending the application of formal methods to analyse

human error and system failure during accident investigations. Softw. Eng. J. 11 (6),

355–365 .

ones, P.M. , 1997. Human error and its amelioration. In: Handbook of Systems Engineer-

ing and Management. Wiley, pp. 687–702 .

ebabjian, R., 2016. Accident Statistics . planecrashinfo.com , Accessed 3/14/2016

enny, D.J. , 2015. 24th Joseph T. Nall report: General Aviation Accidents in 2012. Tech-

nical Report. AOPA Foundation .

irwan, B. , Ainsworth, L.K. , 1992. A Guide to Task Analysis. Taylor and Francis, London .

ohn, L.T. , Corrigan, J. , Donaldson, M.S. , 2000. To Err is Human: Building a Safer Health

System. National Academy Press, Washington .

awley, H.G. , 1974. Operability studies and hazard analysis. Chem. Eng. Prog. 70 (4),

45–56 .

i, M. , Molinaro, K. , Bolton, M.L. , 2015. Learning formal human-machine interface designs

from task analytic models. In: Proceedings of the Human Factors and Ergonomics

Society Annual Meeting. HFES, Santa Monica, pp. 652–656 .

i, M., Wei, J., Zheng, X., Bolton, M.L., 2017. A formal machine learning approach to

generating human-machine interfaces from task models. IEEE Trans. Hum. Mach. Syst.

doi: 10.1109/THMS.2017.2700630 . In Press.

i, Y.W. , Blandford, A. , Cairns, P. , Young, R.M. , et al. , 2005. Post-completion errors in

problem solving. In: Proceedings of the XXVII Annual Conference of the Congnitive

Science Society. Cognitive Science Society, Inc., Wheat Ridge, pp. 1278–1283 .

anning, S.D. , Rash, C.E. , LeDuc, P.A. , Noback, R.K. , McKeon, J. , 2004. The Role of Hu-

man Causal Factors in US Army Unmanned Aerial Vehicle Accidents. Technical Re-

port, 2004-11. USA Army Research Laboratory .
121
artinie De Almeida, C. , Palanque, P. , Ragosta, M. , Fahssi, R.M. , 2013. Extending pro-

cedural task models by explicit and systematic integration of objects, knowledge and

information. In: 31st European Conference on Cognitive Ergonomics. ACM .

asci, P. , Curzon, P. , Blandford, A. , Furniss, D. , 2011. Modelling distributed cognition sys-

tems in PVS. In: Proceedings of the Fourth International Workshop on Formal Methods

for Interactive Systems. EASST, Potsdam .

itchell, C.M. , Miller, R.A. , 1986. A discrete control model of operator function: a method-

ology for information display design. IEEE Trans. Syst. Man Cybern. Part A 16 (3),

343–357 .

HTSA , 2008. National Motor Vehicle Crash Causation Survey: Report to Congress . DOT

HS 811 059.

orman, D.A. , 1988. The Psychology of Everyday Things. Basic Books, New York .

ffice of Technology Assessment , 1993. Who Goes There: Friend or Foe. Technical Report,

OTA-ISC-537. Congress, US, Washington, DC .

an, D., Bolton, M.L., 2016. Properties for formally assessing the performance level of

human-human collaborative procedures with miscommunications and erroneous hu-

man behavior. Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2016.04.001 . In Press.

aternò, F. , Mancini, C. , Meniconi, S. , 1997. ConcurTaskTrees: a diagrammatic notation

for specifying task models. In: Proceedings of the IFIP TC13 International Conference

on Human-Computer Interaction. Chapman and Hall, London, pp. 362–369 .

aternò, F. , Santoro, C. , 2002. Preventing user errors by systematic analysis of deviations

from the system task model. Int. J. Hum. Comput. Stud. 56 (2), 225–245 .

errow, C. , 1999. Normal Accidents: Living with High-risk Technologies. Princeton Uni-

versity Press, Princeton .

ocock, S. , Fields, B. , Harrison, M. , Wright, P. , 2001a. THEA: A Reference Guide. Technical

Report, YCS336. Department of Computer Science, University of York .

ocock, S. , Harrison, M.D. , Wright, P.C. , Johnson, P. , 2001b. THEA: a technique for human

error assessment early in design.. In: Interact. IFIP Technical Committee No 13 on

Human-Computer Interaction, Tokyo, pp. 247–254 .

asmussen, J. , 1983. Skills, rules, and knowledge; signals, signs, and symbols, and other

distinctions in human performance models. IEEE Trans. Syst. Man. Cybern. 13 (3),

257–266 .

eason, J. , 1990. Human Error. Cambridge University Press, New York .

izzo, A. , Parlangeli, O. , Marchigiani, E. , Bagnara, S. , 1996. The management of human

errors in user-centered design. SIGCHI Bull. 28 (3), 114–118 .

uk šėnas, R. , Back, J. , Curzon, P. , Blandford, A. , 2009a. Verification-guided modelling of

salience and cognitive load. Formal Aspects Comput. 21 (6), 541–569 .

uk šėnas, R. , Curzon, P. , Back, J. , Blandford, A. , 2007. Formal modelling of cognitive

interpretation. In: Proceedings of the 13th International Workshop on the Design,

Specification, and Verification of Interactive Systems. Springer, London, pp. 123–136 .

uk šėnas, R. , Curzon, P. , Blandford, A. , Back, J. , 2009b. Combining human error verifi-

cation and timing analysis. In: Proceedings of the 2007 Conferences on Engineering

Interactive Systems. Springer, Berlin, pp. 18–35 .

almon, P. , Jenkins, D. , Stanton, N. , Walker, G. , 2010. Hierarchical task analysis vs. cog-

nitive work analysis: comparison of theory, methodology and contribution to system

design. Theor. Issues Ergon. Sci. 11 (6), 504–531 .

chraagen, J.M. , Chipman, S.F. , Shalin, V.L. , 2000. Cognitive Task Analysis. Lawrence

Erlbaum Associates, Inc., Philadelphia .

happell, S. , Wiegmann, D. , 2000. Human Factors Analysis and Classification System-H-

FACS. Technical Report, DOT/FAA/AM-00/7. Office of Aviation Medicine, Washing-

ton, DC .

heridan, T.B. , Parasuraman, R. , 2005. Human-automation interaction. Rev. Hum. Factors

Ergon. 1 (1), 89–129 .

pear, S.J. , Schmidhofer, M. , 2005. Ambiguity and workarounds as contributors to medical

error. Ann. Intern. Med. 142 (8), 627–630 .

wain, A.D. , Guttmann, H.E. , 1983. Handbook of Human-Reliability Analysis with

Emphasis on Nuclear Power Plant Applications. Final report. Technical Report

NUREG/CR-1278; SAND-80-0200 ON: DE84001077. Sandia National Labs, Albu-

querque .

hurman, D.A. , Chappell, A.R. , Mitchell, C.M. , 1998. An enhanced architecture for

OFMspert: a domain-independent system for intent inferencing. In: Proceedings of the

IEEE International Conference on Systems, Man, and Cybernetics. IEEE, Piscataway,

pp. 955–960 .

icente, K.J. , 1999. Cognitive Work Analysis: Toward Safe, Oroductive, and Healthy Com-

puter-based Work. Lawrence Erlbaum Associates, Inc., Philadelphia .

redenburg, K. , Mao, J.-Y. , Smith, P.W. , Carey, T. , 2002. A survey of user-centered design

practice. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. ACM, pp. 471–478 .

oods, D.D. , Dekker, S. , Cook, R. , Johannesen, L. , Sarter, N. , 2010. Behind Human Error.

Ashgate Farnham .

right, P.C. , Fields, R.E. , Harrison, M.D. , 2000. Analyzing human-computer interaction

as distributed cognition: the resources model. Hum. Comput. Interact. 15 (1), 1–41 .

hang, J. , Patel, V.L. , Johnson, T.R. , Shortliffe, E.H. , 2004. A cognitive taxonomy of med-

ical errors. J. Biomed. Inform. 37 (3), 193–204 .

http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0015
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0015
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0016
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0017
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0018
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0018
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0019
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0020
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0021
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0021
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0022
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0023
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0024
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0025
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0025
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0026
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0027
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0028
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0029
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0029
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0030
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0030
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0031
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0031
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0032
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0033
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0033
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0034
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0035
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0036
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0036
http://planecrashinfo.com
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0038
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0038
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0039
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0040
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0041
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0041
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0042
http://dx.doi.org/10.1109/THMS.2017.2700630
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0044
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0045
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0046
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0047
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0048
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0049
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0050
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0050
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0051
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0051
http://dx.doi.org/10.1016/j.ergon.2016.04.001
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0053
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0054
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0055
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0055
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0056
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0057
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0058
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0058
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0059
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0059
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0060
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0061
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0062
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0063
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0064
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0065
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0066
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0067
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0068
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0069
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0070
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0071
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0071
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0072
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0073
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0074
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075
http://refhub.elsevier.com/S1071-5819(17)30100-3/sbref0075

	A task-based taxonomy of erroneous human behavior
	1 Introduction
	2 Review of the relevant literature
	2.1 Task analysis and task analytic models
	2.2 Erroneous human behavior
	2.2.1 The phenotypes of erroneous action
	2.2.2 The generic error modeling system
	2.2.3 Comparison

	2.3 Erroneous behavior and task analytic models

	3 A task-based taxonomy of erroneous human behavior
	3.1 The Enhanced Operator Function Model (EOFM)
	3.2 An example for illustrating concepts
	3.3 The taxonomy
	3.3.1 Transition-based erroneous behaviors
	3.3.2 Execution-based erroneous behaviors

	3.4 Summary

	4 Inter-taxonomy compatibility
	4.1 Phenotypes of erroneous action
	4.1.1 Zero-order phenotypes
	4.1.2 First-order phenotypes
	4.1.3 Discussion

	4.2 GEMS slips
	4.2.1 Inattention
	4.2.2 Over attention
	4.2.3 Discussion

	5 General discussion
	5.1 No-error perspective and the systemic contribution
	5.2 Additional categories
	5.3 Recovery behavior
	5.4 Workarounds
	5.5 Other cognitive considerations
	5.6 Generalizability
	5.7 Cognitive work analysis
	5.8 Application areas and use in analyzes
	5.8.1 Erroneous behavior tracking at runtime
	5.8.2 Accident analysis and reporting
	5.8.3 Human reliability analysis
	5.8.4 System design
	5.8.5 Simulation and formal verification

	6 Conclusions
	 Acknowledgments
	 References

