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Psychometrics are increasingly being used to evaluate trust in the automation of safety-critical systems. There
is no consensus on what the highest level of measurement is for psychometric trust. This is important as the
level of measurement determines what mathematics and statistics can be meaningfully applied to ratings.
In this work, we introduce a new method for determining what the maximum level of measurement is for
psychometric ratings. We use this to assess the level of measurement of trust in automation using human
ratings about the behavior of unmanned aerial systems performing search tasks. Results show that trust is
best represented at an ordinal level and that it can be treated as interval in most situations. It is unlikely that
trust in automation ratings are ratio. We discuss these results, their implications, and future research.

INTRODUCTION
With the rise of autonomous systems, researchers have be-

come increasingly interested in designing automation that hu-
mans will trust. There are different ways of measuring trust in
automation (Hoff & Bashir, 2015). Because trust is psycholog-
ical, it is typically measured using psychometric rating scales.
For these, humans use introspection to convert their psychologi-
cal state into a number on a predetermined scale. Unfortunately,
it is not clear what the level of measurement is for trust.

Psychometric scales have one of four levels of measure-
ment: nominal (where numbers only indicate name); ordinal
(where numbers only indicate order); interval (where the dis-
tances between numbers have meaning but there is no meaning-
ful zero); or ratio (where ratios between numbers have meaning
by virtue of there being a meaningful zero). A scale’s level de-
termines what transformations, mathematical comparisons, and
statistical operations can be meaningfully employed on mea-
sures made on the scale (B. H. Cohen, 2013; Stevens, 1946).
Nominal scales are compatible with counts, mode, and con-
tingency correlation; ordinal scales support medians and per-
centiles; interval scales allow for the computation of means,
standard deviations, rank-order and product moment correla-
tions, and most parametric statistics; and ratio scales are com-
patible with percent changes, logarithms, geometric means, and
coefficients of variation (Stevens, 1946). The levels of mea-
surement are ordered from nominal (lowest), to ordinal, to in-
terval, and to ratio (highest). Mathematical operations that can
be performed meaningfully at lower levels can be meaningfully
applied to higher ones. The reverse is not true. Thus, more
powerful mathematics and statistics can be performed on scales
at a higher level of measurement. For this reason, practition-
ers prefer to treat most psychometric ratings as being at least
interval (Furr & Bacharach, 2013; Guilford, 1954).

This topic is controversial. Most psychometrics experts do
not think psychometric scales should be treated as ratios (Furr
& Bacharach, 2013; Guilford, 1954). Furthermore, many er-
gonomists and measurement theorists (Annett, 2002; Michell,
2008; Trendler, 2009) doubt that subjective ratings should be
used as anything more than ordinal. Despite this, researchers
have handled human trust in automation at levels ranging from
ordinal to ratio (Lee & Moray, 1992; Muir, 1987). This is con-
cerning because subjective trust ratings are being used in the
design and execution of complex systems. If these measures
are processed at a higher level than they should be, meaningless
assessments are being made. In safety-critical applications, this
could mean the difference between life and death.

There does not appear to be any work that has investigated
what level of measurement is most appropriate for trust in au-

tomation. Furthermore, there does not appear to be an estab-
lished method for determining what the maximum level of mea-
surement is for any given psychometric scale. There are tech-
niques for eliciting interval-level measures for any given con-
tinuum (see McGrath et al. 1996). However, designing a scale
to create data at a level does not necessarily imply that the phe-
nomenon being measured is on that level.

We set out to fill this gap. We introduce a new method
for determining what the maximum level of measurement is for
psychometrics, and we use this method to assess trust in au-
tomation. Below, we provide background on trust measurement
and the levels of measurement of psychometrics. We then out-
line our method and describe how we used it to evaluate the
maximum level of measurement of trust using a human subjects
experiment with an unmanned aerial system (UAS) task. We
report preliminary results of this analysis and discuss their im-
plications for the measurement and modeling of trust.

BACKGROUND
Measuring Trust in Automation

Trust in automation is subjectively measured on scales
from 1 to n points, where n can range from 5 to 100 (Kessler,
Larios, Walker, Yerdon, & Hancock, 2017). Across the liter-
ature, trust has been treated as being at ordinal, interval (ev-
idenced by the prolific use of parametric statistics), and ratio
(evidenced by analysts computing percent changes in trust val-
ues; Lee and Moray 1992) levels. The interval level is the most
popular because it allows researchers to use parametric statistics
to analyze data. Thus, there is no clear consensus about the level
of measurement of trust.

Psychophysical Levels of Measurement
While we have been not been able to identify any spe-

cific studies that investigate the maximum level of measure-
ment of psychometrics, there have been such efforts within psy-
chophysics. Psychophysics represent the human’s psychologi-
cal representation of measurable physical quantities.

The psychophysics that have been subjected to level-of-
measurement analyses relate to Stevens’ power law (Stevens,
1956), which links physical stimulus intensity to its perceived
intensity. To produce a power law, humans make ratio judg-
ments about the relative magnitudes of different stimuli repre-
sented in physical units on a ratio scale. Prominent researchers
have expressed skepticism that humans are capable of making
true ratio judgments (Laming, 1997). Attempts have been made
to check this (Ellermeier & Faulhammer, 2000; Zimmer, 2005)
by assessing whether judged ratio differences between mea-
sured physical stimuli levels follow multiplicative and commu-
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Figure 1. (a) Shows
transformations be-
tween mental state
M and scales R1
and R2. (b) and (c)
show that if M, R1,
and R2 are ratio (b)
or interval (c), then
f1to2 is ratio or in-
terval respectively.

Low

High

f2:M → R2

Psychometric 
Rating (R1)

Low High
Psychometric 

Rating (R2)

f1:M → R1 If we assume M, R1, and R2 are ratio:

    ∀ m ∈ M: f1(m) = a1 ∙ m and f2(m) = a2 ∙ m

     where a1 > 0 and a2 > 0

    ∴ m = f1(m) / a1 = f2(m) / a2

    ∴ f2(m) = a2 / a1 ∙ f1(m) 

    ∴ f1to2(r1) = a2 / a1 ∙ r1

    If we let a1to2 = a2 / a1

        f1to2(r1) = a1to2 ∙ r1

Mental
State (M)

M

f1to2:R1→R2 

If we assume M, R1, and R2 are interval:

∀ m ∈ M: f1(m) = a1 ∙ m + b1 and  f2(m) = a2 ∙ m + b2 

 where a1 > 0 and a2 > 0

∴ m =(f1(m) – b1)/ a1 = (f2(m) – b2) / a2

∴ f2(m) = a2 / a1 ∙ f1(m) + b1 – a1∙ b1 / a2 

∴ f1to2(r1) = a2 / a1 ∙ r1 + (b1 – a1∙ b1 / a2)

If we let a1to2 = a2 / a1 and b1to2 = (b1 – a1∙ b1 / a2)

        f1to2(r1) = a1to2 ∙ r1 + b1to2(a) (b) (c)

tative properties. These found that judgments satisfied the com-
mutative property, but not the multiplicative one. While this is
sufficient to indicate that humans can make ratio judgments in
power law experiments, it would be more convincing if both
properties held (Narens, 1996). Further, Bolton (2008) found
that psychophysical power laws could be fit to ordinal numbers
generated in computationally simulated power law experiments.

This work is relevant because it shows that there are serious
doubts about the level of measurement used for psychological
phenomena, even when they are representations of physical ra-
tios. The work also shows that the level of measurement can be
evaluated by checking for properties (i.e. multiplicativity and
commutativity) between measurements. However, comparable
evaluations of psychometrics are more challenging because, un-
like with psychophysics, there are no physical measures that can
be used as the basis for comparisons.

Transformations and Levels of Measurement
Scales that fall within a level of measurement can be con-

verted to other scales at the same level through specific transfor-
mations. Let X and Y represent sets of numbers in two different
scales at the same level and f : X → Y be a function that con-
verts X to Y . If we assume X and Y are nominal, f can be any
one-to-one function (where each element of X maps to exactly
one element of Y, preserving the identity of each element). If X
and Y are ordinal, f can be any strictly increasing function (thus
preserving order). If X and Y are interval, f is a linear transfor-
mation f (x) = a · x+ b, where a (a positive scaling factor) and
b (a repositioning of the relative zero) are constants. Finally, if
X and Y are ratio, f (x) = a · x, where a is a constant and a > 0.

These transformations determine whether mathematical
operations are meaningful. For a comparison to be meaningful,
it must hold when the numbers are permissibly transformed to
different scales at the same level. See Table 1 for examples.

OBJECTIVE
We developed a method for assessing the maximum level

of measurement of psychometrics. This method exploits mean-
ingful transformations between scales at the same level of mea-
surement. The relationship we use for this is shown in Figure 1.
In this, we assume two psychometric scales R1 and R2 that
both measure the same psychological quality M without losing
power by transforming M to a lower level. When asked to pro-
vide a rating for the same psychological quality on these scales,
the human will implicitly apply transformations f1 : M → R1
and f2 : M→ R2 respectively. If M is best represented at a ratio
level, R1 measures can be converted to R2 using a ratio trans-
formation of the form f1to2(r1) = a1to2 · r1 (Figure 1(b)), where
a1to2 is a constant. If M is interval, the conversion from R1 to
R2 will be the interval transformation f1to2(r1)= a1to2 ·r1+b1to2
(Figure 1(c)), where a1to2 and b1to2 are constants.

The forms of f1to2 give us an indirect means of determining
the level of measurement most appropriate for measuring M.
Specifically, by collecting psychometric ratings of M on two

Table 1. Meaningful and Meaningless Expressions Based on Transformations

Expression If X and Y are interval with If X and Y are ratio with
f (x)=a x+b f (x)=a x

x1−x2 f (x1)− f (x2)=k( f (x3)− f (x4)) f (x1)− f (x2)=k( f (x3)− f (x4))
=k(x3−x4) ∴(ax1+b)−(ax2+b) ∴(ax1)−(ax2)

=k((ax3+b)−(ax4+b)) =k((ax3)−(ax4))
∴x1−x2=k(x3−x4) ∴x1−x2=k(x3−x4)
∴ The expression is meaningful ∴ The expression is meaningful

x1=k x2 f (x1)=k f (x2) f (x1)=k f (x2)
∴ax1+b=k(ax2+b) ∴ax1+b=k ax2
∴x1=k x2+(k−1)b/a ∴x1=k x2
∴ The expression is meaningless ∴ The expression is meaningful

X and Y are numerical sets at a given level of measurement; x1...x4∈X ; f (x) is
a function f :X→Y ; a and b are constants; and ∴ is “therefore.” An expression
is meaningful in a scale if it holds after transforming each x∈X with f .

different scales (R1 and R2) for identical conditions, the level
of measurement should be revealed by the transformation for
converting measures collected on one scale to the other ( f1to2 in
Figure 1). Because both ratio and interval transformations are
in a linear form, characterizing a transformation between any
two data series observed on two different psychometric scales
can be accomplished through a regression analysis.

Because there can be error in the observation of both the
predictor and the predicted measures, our method uses Deming
regression (Deming, 1943): a linear regression model that is
able to account for this condition. Given that Deming regression
does not use least squares in its fitting process, R2 is not used.
Thus, for this work, we use a Pearson’s correlation coefficient
(r) as the standard, regression-model-independent measure of
how linearly related two measures are.

If the measure on one scale (R1) is treated as the X variable
and the comparable measure on the other (R2) is the Y , a re-
gression will result in a model f1to2(r1) = a1to2 · r1 +b1to2. The
statistics produced by this analysis will give us the means to
identify the measurement level of M: If there is a not a strong
non-parametric correlation between R1 and R2 (if they have a
low Spearman’s ρ), the data will not suggest a monotonically
increasing relationship between measures and M will be at least
nominal. If there is a strong non-parametric correlation be-
tween R1 and R2, the data will suggest a monotonically increas-
ing relationship between measures and M will be at least or-
dinal. If there is a strong linear relationship between R1 and
R2 (indicated by a Pearson’s r) and the regression model has a
significant intercept (b1to2), then M will be interval. If there is a
strong linear relationship between R1 and R2 and the regression
model has a significant intercept, then M will be ratio.

In this method, human judgments on only two scales are
necessary for determining the level of measurement of a psy-
chological attribute. However, by using more we can reduce the
chance that any set will have the same arbitrary zeros. Thus, we
use three scales to reduce the risk of concluding that a psycho-
logical phenomenon is ratio when it is actually interval.

We used this approach to evaluate the level of measurement
of trust using a human subjects experiment.
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METHODS
We used a human subjects experiment to evaluate the level

of measurement of trust. This study received approval from the
University at Buffalo IRB under STUDY00002118.

Procedure
This experiment had participants arrive at the laboratory

and sign an informed consent document. Participants observed
a PowerPoint presentation that introduced them to the experi-
mental task. They then performed the experiment in which they
watched simulations of UASs performing search tasks. The
same simulations were observed in three blocks, where humans
rated how much they would trust the automated controller they
observed using three different judgment methods.

Participants
We recruited 36 University at Buffalo student participants.

13 were female and 23 were male. The average age was 26.

Materials and Apparatus
The experiment was run in a controlled, quit, evenly-

lighted laboratory. It was administered on desktop computers
resting on a computer desk in front of which a participant would
sit. Computers were equipped with 21 inch LCD monitors, op-
tical mice, keyboards, and physical knobs (see Figure 3). The
experiment was administered on the computers using software
that was created for this project.

During the experiment, the software would depict a video
of a UAS flying around a given area and performing search
tasks (Figure 2). The simulations were created using UxAS
and AMASE (Rasmussen, Kingston, & Humphrey, 2018). This
enabled simulations to represent realistic UAS dynamics and
route planning. The UAS was depicted as a blue chevron shape
moving through the area. A “footprint” of the UAS’s camera
also showed the ground area the camera was capturing. A cross
in the footprint indicated the center of the camera’s view. The
smaller the footprint, the more focused the camera.

In simulations, the UAS always started in the upper left side
of the area. The UAS was expected to complete three search
tasks. In an area search, the UAS would search (cover) the space
encompassed by the green circle with the camera footprint. In
a point search, the UAS would have the footprint’s cross pass
over a specific spot in the lower right of the area. In a path
search, the UAS would have the footprint’s cross pass over the
entirety of the green line. When all tasks were complete, the
UAS would return to the starting point and loiter there. The
UAS was expected to avoid flying into the two “no fly zones”
(red shapes). When the UAS’s planned flight path was shown
(as in Figure 2), it was depicted as a blue line.

After each simulation, participants were asked to provide
ratings about their trust in the UAS with either (Figure 3): (a) a
number between 0 and 100, (b) the position of a physical knob,
or (c) the position of an on-screen slider.

Independent Variables
The independent variables all related to the experimental

trials. Specifically, trials varied along dimensions that would
exhibit different levels of trust. This trial geometry included the
possibility of all the factors shown in Table 2.

These factors were selected because their variation should
produce a range of trust responses from participants. Specifi-
cally, each related to the “three Ps” Lee and See (2004) of au-
tomation that influence trust: its purpose, the process it uses,
and its performance. The variety of tasks the UAS undertakes

Figure 2. A screen of
the UAS simulation.

(a)

(b)

(c)

Figure 3. Software dia-
log boxes used for col-
lecting human trust rat-
ings. (a) Participants
would enter a num-
ber between 0 and 100.
(b) Participants would
turn the physical knob
connected to the com-
puter. (c) Participants
would use the com-
puter’s mouse to move
a slider.

relate to purpose. The Order, Density, and Path relate to pro-
cess. Error, Skip, and NoFly all relate to performance.

Dependent Measures
The dependent measures were human trust ratings made

using each of the three judgment modalities (Figure 3). With
the ask modality (Figure 3(a)), human trust was measured as
a floating-point number from 0 to 100. With the knob (Fig-
ure 3(b)), human trust was measured as a floating-point number
from 0 to 100 based on the position of knob between its mini-
mum (0◦) and maximum (300◦) positions. With the slider (Fig-
ure 3(c)), human trust was measured as a floating-point number
from 0 to 100 based on the left-to-right position of the slider.

Experimental Design
We created a set of 96 trials: for each of the six possible

Error levels, we generated 16 different trials. These had every
possible combination where Skip was or was not None, each
possible value of Path, and each possible value of Density. For
each of the trials where Skip was not None, one of the options
for Skip (see Table 2) was randomly assigned as well as a ran-
dom Order. In 9 trials, the UAS flew into a no fly zone. We
randomly selected 30 trials for use in the actual experiment. In
2 of these, the UAS entered a no fly zone.

Four additional training trials were selected that exhibited
variation along all the scenario geometry dimensions. Two ad-
ditional training trials, representing best and worst performance
conditions, were also created. The best performance trial had
the UAS complete all search tasks with no error, at the high-
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Table 2. The scenario geometry for UAS simulations

Variable Description Levels

Path The UAS could show or not show its flight path {Visible, Invisible}
Error The UAS could fly its path and control its camera with levels of error (random turns and jitters) {0, 0.2, 0.4, 0.6, 0.8, 1}
Order The UAS could execute search tasks in any order All the possible orders
Skip The UAS could skip at most one task or part of the line search task {None, Area, Point, Line, FirstLine, SecondLine}
Density The UAS could execute area searches with different densities (based on the camera’s footprint size) {Low, Medium, High, Highest}
NoFly The UAS could fly into “no fly zones” {Occurs, DoesNotOccur}

Error levels are the proportion of global maximums used as local maximums for uniformly distributed error. For the UAS, the global maximum was 0.001◦ for latitude
and longitude and 0.2 for rotation radians. For the footprint, the global maximum was 0.0003◦ for the latitude and longitude of each point boundary point.

est search density, and in the most efficient order. The UAS in
the worst performance trial had the highest level of error and
randomly flew through the search area, including no fly zones.

A participant was assigned three random orders of the 30
experimental trials, one for each of the three judgment modali-
ties. Trials for a given modality were presented in blocks. Block
order was counterbalanced between participants.

Training trials were presented in a consistent order. At the
beginning of the experiment, participants saw training to intro-
duce them to the experimental task and first judgment modality.
In this, participants saw the “best” trial, then the “worst” trial,
then four other trials. On-screen instructions introduced judg-
ment modalities and scenario geometry features in each trial.
Subsequent training blocks of three trials (which excluded the
best and worst conditions) were presented between judgment
modalities to introduce participants to the new modality. Train-
ing trial and presentation orders were consistent between par-
ticipants regardless of the given judgment modality order.
Data Analysis

For each participant, we used our new method to assess
the level of measurement of trust by calculating non-parametric
(Spearman’s ρ) and parametric correlations (Pearson’s r) and
fitting Deming regression models between the judgments made
for the different modalities. To determine if a regression
model had a significant intercept, we used the jackknife method
(NCSS, 2016) to calculate a 95% confidence interval around the
intercept and checked if it contained 0.

Using these statistics, we developed a heuristic to interpret
results. This enabled us to determine if a given model provided
weak or strong evidence that trust was at least at a given level of
measurement and to synthesize evidence across a participant’s
models to draw conclusions about the level of measurement of
trust. For each model: (a) Evidence for nominality was assumed
by default. (b) Evidence for ordinality was expressed by a weak
Spearman’s correlation (ρ ≥ 0.1; J. Cohen 1988). (c) Weak
evidence for intervality was indicated by a moderate Pearson’s
correlation (r ≥ 0.3). (d) Strong evidence for intervality was
indicated by a strong Pearson’s correlation (r ≥ 0.5). (e) Weak
evidence for a ratio scale was indicated by evidence for inter-
vality and a non-significant intercept. (f) Strong evidence for
a ratio scale was indicated by strong evidence for intervality, a

non-significant intercept, and a small (20 unit) 95% confidence
interval around the intercept.

Across all three models for each participant: (a) Strong ev-
idence of nominality was assumed. (b) Weak evidence of or-
dinality was assumed if one or more models provided evidence
of ordinality. (c) Strong evidence of ordinality was assumed if
two or more models provided evidence of ordinality. (d) Weak
evidence of intervality was assumed if two or more models pro-
vided evidence of intervality. (e) Strong evidence of intervality
was assumed if two or more models provided strong evidence
of intervality. (f) Weak evidence of a ratio level was assumed
if all models had weak evidence of a ratio level. Note that this
required every model to not have a significant intercept. This
is because evidence of any intercept would indicate non-ratio
trust. (g) Strong evidence of a ratio level was assumed if all
the models exhibited evidence of a ratio level and two or more
exhibited strong evidence of this.

RESULTS
Due to page limits and an ongoing data analysis, we only

present the results of the first six participants. Analysis results
and the synthesis of all three modality comparisons for each
participant are reported in Table 3 and Fig. 4. Analyses revealed
that no participant exhibited strong evidence of a ratio level of
measure for trust. Only participant 6 had weak evidence of a
ratio level. Conversely, only participant 3 showed no evidence
of an interval level. Five of the six participants showed evidence
of an interval level and the evidence for all but one of these was
strong. All the participants had evidence of an ordinal level of
measurement, and all but one had strong evidence for this.

DISCUSSION AND CONCLUSIONS
This research is the first to identify the maximum level of

measurement of the psychometrics of trust in automation. We
are still analyzing all of our results. However, there is consis-
tency in those we reported. First, because ordinal is the highest
level that all the participants exhibited strong evidence for, and
higher levels can always be accommodated by a lower level, it
is safest to treat trust as ordinal. However, only one participant
did not provide evidence of interval-level trust and only one of
the remaining had evidence that was not strong. Thus, given
the significant increase in mathematical power offered by the

Table 3. Preliminary Experimental Results

y - Ask, x - Knob y - Ask, x - Slider y - Knob, x - Slider At Least

ID ρ Model Intercept CI r ρ Model Intercept CI r ρ Model Intercept CI r N O I R

1 0.81 y =0.59 x +21.43* [ 9.89, 32.97] 0.79 0.56 y =0.91 x + 5.69 [-12.99, 24.37] 0.59 0.67 y =1.54 x -26.69 [-54.13, 0.75] 0.64 • • •
2 0.37 y =0.56 x +38.59* [ 22.27, 54.91] 0.47 0.51 y =0.57 x +45.33* [ 32.84, 57.82] 0.53 0.33 y =1.03 x +12.05 [ -3.06, 27.16] 0.39 • • ◦
3 0.06 y =0.93 x - 1.10 [-29.26, 27.06] 0.19 0.27 y =1.12 x - 8.44 [-38.52, 21.63] 0.29 0.05 y =1.20 x - 7.91 [-33.56, 17.73] 0.13 • ◦
4 0.93 y =0.60 x +22.86* [ 18.00, 27.72] 0.96 0.90 y =0.94 x + 4.29 [ -2.76, 11.34] 0.94 0.90 y =1.57 x -31.00* [-43.52, -18.49] 0.95 • • •
5 0.73 y =0.75 x +17.35 [ -4.49, 39.20] 0.70 0.91 y =0.89 x +14.34* [ 0.36, 28.32] 0.91 0.76 y =1.18 x - 4.00 [-20.49, 12.48] 0.78 • • •
6 0.42 y =0.76 x + 8.24 [ -8.52, 25.00] 0.53 0.65 y =0.95 x + 7.49 [ -3.43, 18.42] 0.68 0.61 y =1.25 x - 0.99 [-20.76, 18.78] 0.64 • • • ◦

ρ is the Spearman’s correlation coefficient. * indicates a statistically significant intercept. CI denotes a 95% confidence interval. r is the Pearson’s correlation coefficient.
N, O, I, and R are shorthand for Nominal, Ordinal, Interval, and Ratio respectively. Circles indicate whether the three models for a given participant (ID) provided strong
(•), weak (◦), or no (a blank) evidence for the associated level of measurement.
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Figure 4. Plots showing the data collected from each participant (points), the
fitted Deming regression line (black lines), and 95% confidence interval (blue
dotted lines) for each participant for each pair of judgment modalities. All plots
go from 0 to 100 on both the x and y axes.

interval level, our results indicate that this is a safe option. Con-
versely, only one participant had evidence of a ratio level, and
this evidence was weak. This suggests that while some people
may think about trust at a ratio level, it is not common.

If the full results are consistent with what is presented here,
analysts should be extremely careful when handling subjective
trust data. This is because some people are treating trust as if
it is ordinal and/or ratio. Results that have processed trust as
if it is ratio (Lee & Moray, 1992) should be reexamined to see
if they still hold with trust being interval. These points will be
more deeply explored after analyzing the complete data set.

There are limitations with Stevens’ (1946) levels of mea-

surement. For example, percentages constitute a scale that has
a meaningful zero but does not support meaningful ratio trans-
formations (Velleman & Wilkinson, 1993). Because of such
discrepancies, researchers (Mosteller & Tukey, 1977) have pro-
posed alternative topologies of measurement (though they are
rarely used). Future work should investigate how our results
and methods could address these other topologies.

Finally, there are many psychometrics scales used in er-
gonomic research for measuring things like workload and sit-
uation awareness. None of these have had their level of mea-
surement assessed. Thus, it is possible that there are problems
with the ways these measures are treated in the literature. Future
work should assess these concepts using our new method.
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