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Testing is an effective approach for finding discrepancies between intended and actual system behavior. How-
ever, the complexity of modern system can make it difficult for analysts to anticipate all the interactions that
need to be tested. This is particularly true for human-interactive systems where humans may do things that
were not anticipated by analysts. We address this by introducing a novel approach to automated test case gen-
eration for human-machine interaction. We do this by combining formal models of human-machine interfaces
with formal models of human task behavior. We then use the robust search capabilities of model checking
to generate test sequences guaranteed to satisfy test coverage criteria. We demonstrate the capabilities of our
approach with of a pod-based coffee machine. Results and future research are discussed.

INTRODUCTION
Testing is an effective approach for finding discrepancies

between intended and actual system behavior and unanticipated
problems. Testing, including the design and execution of test
cases, is often regarded as the most intellectually-demanding,
time-consuming, and expensive parts of system development
(Bertolino, 2007). As such, it can be difficult (if not impos-
sible) for testers to anticipate all of the system conditions that
need to be evaluated. This is especially true of human-machine
systems. This is because the human operator is an additional
concurrent component to the system and one whose behavior is
not governed by the system’s implementation.

To address these issues, researchers have developed auto-
mated test case generation (Ammann & Offutt, 2016). Many
test case generators use formal methods: mathematically based
languages, techniques, and tools for the modeling, specification,
and analysis of systems. These are model-based approaches for
creating tests that are efficient and provide guarantees about
their completeness (with respect to the model). In particu-
lar, model checking can be used to automatically generate test
cases. It does this by parsing the model of the system with effi-
cient and exhaustive searches to create test cases (traces through
the model) that satisfy specified coverage criteria: descriptions
of the system conditions the test must encounter.

In this paper, we introduce a new method for automatically
generating test cases for human-machine systems using human
task behavior and system models. With a given formal cover-
age criterion (based on the interface and task models), model-
checking-based-tools are used to automatically create tests from
the models that satisfy task and interface coverage criteria.

Below we describe the literature relevant to understanding
our method. This is followed by a description of our objectives.
We then present our method and discuss its implementation.
Then, we apply our method to the evaluation of a coffee ma-
chine by generating tests for it using two coverage criteria and
executing them on an actual system. We report these results and
discuss their implications for future research.

BACKGROUND
Our approach uses formal task analytic behavior models

and model-checking-based tools for automated test case gener-
ation. We discuss these and the use of test case generation in
human-machine systems below.
Task-analytic Models of Human Task Behavior

Task analytic behavior models (or task models) are pro-
duced by a task analysis (Kirwan & Ainsworth, 1992) to capture
the behaviors human operators use to achieve goals when inter-
acting with a system. Task models describe how people actually
interact with an existing system or, if used during design, how
designers expect people to interact with the system. They can be

used in system engineering in a number of different capacities
including human-automation interface creation, training devel-
opment, and usability analyses.

Task models represent the input-output behavior of human
operators by explicitly describing the environmental conditions
under which humans pursue goals and how they achieve those
goals by performing actions. Thus, they can be interpreted com-
putationally. This allows them to be included in formal meth-
ods analyses (Bolton, Bass, & Siminiceanu, 2013) like model
checking and automated test case generation.

Formal Methods and Model Checking
Formal methods are rigorous tools and techniques for the

modeling, specifying, and verifying systems. Formal model-
ing constructs system models using well-defined mathematical
languages. Specifications are desired system properties. For-
mal verification mathematically proves whether the specifica-
tion properties are always satisfied by the model.

Model checking (Clarke, Grumberg, & Peled, 1999) is an
automated approach to formal verification. The formal model
is usually represented as a state machine: states and transitions
between states. Specification properties are usually logically as-
serted using temporal logic. Model checking performs formal
verification by exhaustively searching the models statespace to
determine whether the model satisfies the specification. If there
is no violation, the model checker has proven that the specifica-
tion is true in the model. Otherwise, the model checking returns
a counterexample: a counterproof that shows steps through the
system model that violate the specification.

Model checking is widely used in computer software and
hardware engineering. They have also received attention from
the human-machine interaction community that seeks to ap-
ply them in the engineering of reliable human-machine systems
(Bolton, 2017a; Bolton et al., 2013). In particular, task behav-
ior models can be included in larger formal verification analyses
of complex systems (Bolton et al., 2013) and formal-methods-
based automated test case generation.

Automated Test Case Generation
A test case is a sequence of inputs and expected outputs

that can be run on a system (Ammann & Offutt, 2016). Auto-
mated test case generation automatically creates test cases from
information (design documents or implementations) available
about the target system. The generic, model-based test case
generation process has three steps: (1) constructing a model of
the system, (2) developing coverage criteria to reflect the testing
requirements, and (3) generating the test cases.

Coverage criteria can vary based on analyst goals. When
testing software, an analyst may wish to execute every func-
tion in the source code (functional coverage), every line of code
(statement coverage), or every branching point in the program
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(condition coverage) (Ammann & Offutt, 2016). For state ma-
chine models (like those used in model checking), a tester may
want to ensure that tests hit every system state (state coverage)
or every transition (edge coverage) in the system model.

Because of its propensity for traversing system models
and producing traces, model checking can be used for auto-
mated test generation. There are two general approaches to this
(Fraser, Wotawa, & Ammann, 2009). In the first, test cases are
created by checking specification properties expected to pro-
duce counterexamples. By generating multiple counterexam-
ples with multiple specifications, analysts can ultimately satisfy
coverage criteria. However, this approach can result in tests
that are inefficient. Thus, other approaches allow analysts to
explicitly describe coverage criteria and use model checking to
find tests that satisfy them. For example, the Symbolic Analysis
Laboratory (SAL) (Hamon, de Moura, & Rushby, 2004) allows
analysts to identify a number of Boolean “trap” variables in the
model that describe the coverage criteria. These variables be-
come true when corresponding parts of the coverage criteria are
satisfied. The model checker then uses efficient search algo-
rithms to drive all of the trap variables to true.

Test generation has two purposes. Analysts may use tests
to validate that an implementation matches a formal model’s
behavior and thus any properties verified against it. Analysts
also use tests to collect measures from the actual system that
were not possible to represent in the formal model.

Generating Test Cases for Human-machine Interaction
A small but growing body of literature has been exploring

how formal-methods-based test case generation can be used for
human-machine systems. There are generally two approaches:
those that are interface-based and those that are task-based.

Interface-based methods use the human-machine interface
as the system model (Bowen & Reeves, 2009; d’Ausbourg,
1998; Memon, Pollack, & Lou Soffa, 2001). In such methods,
coverage criteria is asserted over a formal model of the inter-
face. For example interface state coverage specifies that every
state of the interface is visited in generated tests.

Task-based methods treat the task model as the system
model and generate tests from it. In these, actions that con-
form with the task model are deemed valid and contextualized
by system conditions prescribed in the task (Barbosa, Paiva, &
Campos, 2011; Campos, Fayollas, Martinie, & Navarre, 2016;
Vieira, Leduc, Hasling, Subramanyan, & Kazmeier, 2006). In
these approaches, coverage criteria are asserted over elements
of the task. For example, activity coverage could be used to gen-
erate tests that would have the user (or an automated sequence)
execute every activity included in a task.

All of these approaches have been used successfully in the
testing of human-machine systems. However, they have limita-
tions. Interface-based approaches include sequences of actions
that are random and are thus inefficient divorced from what
goals the human is pursuing and how they can try to achieve
them. Task-based approaches do not use an actual description
of the machine’s and its interface’s behavior. Thus, tests may
not capture realistic interactions that are dictated by the unrep-
resented parts of the system’s automation. Given the missing
elements in each approach, neither can express coverage criteria
that genuinely represents human-automation interaction.

OBJECTIVE
In this research, we introduce a new approach to automated

test case generation. This avoids the limitations of the previous
methods by allowing tests to be generated that are contextual-
ized in terms of both human task behavior and system behavior.
Thus, coverage criteria can be expressed over both task and in-

terface models. Our method uses task models represented in
EOFM and employs its supported formal system modeling ar-
chitecture. Thus, we discuss EOFM and its modeling architec-
ture below. We then present our method. This is followed by an
application of our approach to the testing of a pod-based coffee
machine. We report on problems we discovered executing our
tests on the coffee machine.

METHODS
The Enhanced Operator Function Model

We make use of EOFM (Bolton, Siminiceanu, & Bass,
2011). This XML-based language models human task behav-
ior as an input/output system. Inputs come from other parts of
the system like the interface or environment. Outputs are hu-
man actions. The task model describes how human actions are
generated based on input and local variables.

EOFMs are represented as a hierarchy of goal-directed ac-
tivities and actions. Activity strategic knowledge is modeled
explicitly as Boolean conditions using input and local vari-
ables. These can assert what must be true for an activity to
start executing (Preconditions), repeat (RepeatConditions), or
complete (CompletionConditions). Activities decompose into
sub-activities and ultimately atomic actions. A decomposition
operator describe the temporal relationships between, and the
cardinality of, the decomposed activities or actions. EOFM has
nine such operators (Bolton et al., 2011). In this work, we use
two: xor, where exactly one activity or action in the decom-
position executes, and ord, where all activities or actions must
execute in the order they appear in the decomposition.

EOFMs can be visually rendered as tree-like graphs (see
Figure 3). They also have formal semantics (Bolton et al., 2011;
Bolton, Zheng, Molinaro, Houser, & Li, 2017) that mathemat-
ically describe how they can execute. Every activity and ac-
tion is treated as a state machine that transitions between three
states: Ready (the initial state), Executing, and Done. The
strategic knowledge conditions of an activity and implicit con-
ditions based on the activity’s or action’s location in the task
determine whether it can start, end, or reset based on its position
in the task (Bolton et al., 2011, 2017).

EOFM has a Java-based translator that will convert an
EOFM into the input language of SAL (De Moura, Owre,
& Shankar, 2003) using these formal semantics. This allows
EOFM to be used as part of a larger system model in model
checking analyses. This larger system model is constructed
around EOFM’s formal modeling architecture (Bolton & Bass,
2010) which can (as needed) account for human operator mis-
sion goals, machine automation behavior, human-machine in-
terfaces, and environmental dynamism.

Our Method for Automated Test Case Generation
Our approach to automated test case generation for human-

machine interaction is shown in Figure 1. In this, it is assumed
that an analyst has access to a description of the system they
want to evaluate and a normative task model (from a task anal-
ysis). Through automated generation and manual operations,
these artifacts are converted into both a formal system model
(encompassing the EOFM’s architectural concepts; Bolton and
Bass 2010) and coverage criteria (which can be expressed over
both the task model and the other elements of the architecture).

With a formal system model and coverage criteria, model-
checking-based automated test case generation is used to create
tests that satisfy the coverage criteria. These show how human
operators perform tasks (including atomic actions) as well as
the response these behaviors produce in the other elements of
the system. These can be executed on an actual implementation
of the system to validate that the system conforms to the model.
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Figure 1. Flow diagram
of our test case genera-
tion method.

Method Implementation
We implemented our method using EOFM for modeling

human operator tasks. This allowed us to use EOFM’s trans-
lator for incorporating task behavior in a formal system model.
This also allowed us to use EOFM’s support for automatically
creating (Li, Wei, Zheng, & Bolton, 2017) the other formal ele-
ments of the system. To create tests, we used the automated test
case generator of SAL (Hamon et al., 2004). This was employed
because it is the formal modeling and analysis suite supported
by EOFM. In SAL, an analyst identifies coverage criteria using
Boolean trap variables. This is currently done manually by the
analyst in our implementation. The SAL test case generator
uses its model-checking-based search algorithms to find a trace
(test sequences) through the model that causes all of the trap
variables to become true.

APPLICATION
To demonstrate the capabilities of our method, we apply

it to a realistic application: a pod-based coffee machine (Fig-
ure 2). For the purpose of this analyses, we used informa-
tion from the coffee machine’s manual to create an EOFM
to represent the normative human task behavior for interact-
ing with the device. In the task (Figure 3), the human can
turn the device on (a) or off (b) by pressing the power button
(hPressPowerButton). The lid can be opened if it is closed
(c) and closed if it is open (d). If the lid is open and the water
indictor shows that not enough water has been entered, the user
can add water to the reservoir (e). The user can lift the handle
(f) if the handle is down and the machine is not brewing. If the
handle is up, the user can enter a pod (g) if one is not present or
remove a pod (h) if one is. If the handle is up, it can be lowered
(i). If the machine is brewing, the user can pause brewing by
pressing the brew button (j) or wait for brewing to finish (k).
A mug can be placed on the platform (m) if no mug is there.
Brewing can be started (l) if the machine’s power is on, the
handle is down, there is enough water in the reservoir, a mug is
placed on the platform, and the machine’s brewing is paused or
stopped. Finally, a user can remove a mug (n), where removing
the mug during brewing will result in the machine pausing.

Using this task as input, we created a functional design of
the system’s interface using the generation method described
by Li et al. (2017). This produced the interface model shown
in Figure 4. In this, the interface is represented by seven, con-
current, synchronously composed state machines: the brewing
state of the machine (iBrewingState; a); the state of the pod
(iPodEntered; b); the water indicator (iEnoughWater; c); the
lid (iLid; d); the handle (iHandle; e); the power (iPower; f);
and the placed state of the mug (iMug; g).

We then automatically converted the task model into the in-
put language of SAL using EOFM’s translator (Bolton & Bass,
2010) to form a larger formal system model. In doing this, we
automatically generated specification properties (using the pro-
cess from Bolton, Jimenez, van Paassen, and Trujillo (2014)) to

Pod Brew 
Button

HandleReservoir Lid 

Coffee Cup 
Platform

Water 
Reservoir

B

Power Button 
and Indicator

Add water

Water 
Indicator

Figure 2. The coffee machine appli-
cation (adapted from Bolton 2017b).

check that the interface will always support the human opera-
tor’s task. These were verified with the formal system model
using SAL’s symbolic model checker.

In this application, we wanted to ensure that we generated
tests that could cover both the interface states of the machine
and the activities of the tasks. Thus we applied our method with
both interface state coverage and task activity coverage. For
interface coverage, we created trap variables representing each
of the 84 reachable interface states from Figure 4. For activ-
ity coverage, we created trap variables that would become true
whenever each activity or action in a task model was executing.

RESULTS
SAL’s automated test case generator (sal-atg) was ap-

plied to our coffee machine model with the two coverage crite-
ria using a Linux workstation with a 3.7 Ghz Xeon Process and
128 gigabits of RAM. Parameters were assigned so that an un-
limited search depth was used (�smcinit), alternate branches
could be pursued (�branch), and a search depth of 30 on any
given model branch (-ed 30).

For interface coverage, test generation took 91.19 seconds
and produced a test with 162 sequential actions. For activity
coverage, generation took 9.55 seconds and produced a test with
34 sequential actions. We executed each test on an actual coffee
machine while noting any discrepancies between system behav-
ior and that predicted in the test. Discrepancies constituted vali-
dation failures for the implementation. We also noted incidental
usability issues related to the undoability of actions related to
the water in the system. Results are summarized in Table 1.

DISCUSSION
In this work, we introduced a novel method for the auto-

mated test case generation of human-machine interaction. This
improves on preexisting methods that only accounted for sys-
tem interface behavior or human task behavior. By including
both in our analyses, we ensure that the test sequences gener-
ated are contextualized in terms of their interaction.

The coffee machine application illustrates the power of our
approach. Specifically, we generated test cases that satisfy in-
terface state and activity coverage from a formal model verified
to always support the human operator’s task. We then executed
these tests on an implementation of the system to validate that
the implementation conformed with the model and to gain inci-
dental insights into system usability.

The tests identified four issues with the pod-based coffee
machine. In the first, the physical design of the machine pre-
vented the user from adding or remove a mug when the handle
was lifted. The other three related to automation behavior: the
machine could dispense coffee beyond the mug’s capacity, the
machine would not pause brewing when the mug was removed,
and there was a situation where the machine would not begin
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Figure 3. Visual representation of the EOFM tasks for interacting with the
pod-based coffee machine. Actions are rectangles. Activities are rounded
rectangles. An activity decomposition is an arrow labeled with the de-
composition operator. The arrow points to a rounded rectangle containing
the decomposed activities or actions. Strategic knowledge conditions are
connected to the activity they constrain and labeled with their Boolean
logic. A Precondition is a yellow triangle; a CompletionCondition is a
magenta triangle; and a RepeatCondition is a recursive arrow.

brewing even though all of the necessary steps were complete.
All of these constitute serious implementation issues. All but
the last are relatively straightforward. The last one, where the
machine failed to brew, appears to occur because the implemen-
tation of the machine uses the lifting of the handle to load water
into an internal compartment to enable brewing. Thus, if there
is not enough water in the machine when the handle is lifted, the
machine will not brew. This is an interesting problem because,
when the automation contains hidden states or modes, the hu-
man may not be able to keep track of the state of the machine,
producing mode confusion (Sarter & Woods, 1995).

In discovering the hidden mode as well as the mug over-
flow, we came to the realization (an incidentally discovered us-
ability issue) that there was a problem with undoability in the

machine. If excessive water is loaded into the internal reservoir
by lifting the handle, there is no direct way to undo this action
short of brewing the coffee. Thus, manually executing the test
cases had utility beyond merely identifying discrepancies be-
tween the model and its implementation.

While the presented method was useful in our application,
there is room for improvement in future work. For example, the
presented work only considered two different coverage criteria.
Because EOFM’s architecture can contain system elements be-
yond human tasks and interfaces (Bolton & Bass, 2010), cov-
erage criteria could be asserted across additional system ele-
ments. Future work should investigate which coverage criteria
provide analysts with the most useful information. Additionally,
EOFM has a variant called EOFMC (EOFM with Communica-
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Figure 4. The human-
machine interface for the
pod-based coffee machine as
a collection of seven syn-
chronously composed, con-
current state machines. Note
that ovals represent states and
arrows between ovals repre-
sent transitions. Arrows start-
ing with a dot indicate an ini-
tial state.

Interface Test Activity Test Problem

17, 207, 273, 397 133 Could not remove mug because the handle is up.
266, 906, 1156 124 Could not place mug because the handle is up.

471, 729 67 Previously adding water while the handle was up resulted in excess water
being added and water overflowing the mug during brewing.

603, 1036 184 Removing the mug did not pause brewing.
1027 238 Water was added after the handle was raised, a pod was added, and the

handle was lowered. This resulted in the brew button having no response.

Table 1. Steps Where Prob-
lems Occurred when Exe-
cuting Test Cases Generated
to Satisfy Different Coverage
Criteria

tions) (Bass et al., 2011) that allows human-human communica-
tion and coordination to be incorporated into large task and for-
mal system models both with and without miscommunication
generation (Bolton, 2015). Future work should investigate how
human-human communication and coordinated can be incorpo-
rated into our test generation method. Finally, Our test case
generation method only considered normative human behavior.
However, other test generation methods (Barbosa et al., 2011;
Campos et al., 2016) have included generated human error in
tests. This allows testers to assess the impact of erroneous hu-
man behavior on actual system performance. EOFM supports
a number of different approaches for generating erroneous hu-
man behavior (Bolton, 2017b). Future work should investigate
how the erroneous behavior generation methods supported by
EOFM can be incorporated into test case generation.
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