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Model checking is increasingly being used with task analytic behavior models to prove whether models of
human-interactive systems are safe and reliable. Such methods could be used to predict how different types
of users will choose to use system features. However, existing methods focus on modeling the full space of
possible human behaviors without considering how users will choose to navigate this space. In this work, we
present a new approach that enables model checking to predict how different types of users will use features
of an interactive system by employing a novel combination of task analytic modeling and utility theory. This
paper presents this method and illustrates its power with a smart thermostat application. The results of the
application analysis and its implications for future research are discussed.

INTRODUCTION

Formal methods (Wing, 1990) are tools and techniques
from computer science that have been increasingly finding ap-
plications in human factors engineering (Bolton, 2017a; Bolton,
Bass, & Siminiceanu, 2013; Weyers, Bowen, Dix, & Palanque,
2017). This is because formal methods provide robust, math-
ematical tools, such as model checking (Clarke, Grumberg, &
Peled, 1999), that prove whether system models satisfy specifi-
cations. For human factors, this can be used to determine if a
system design satisfies system performance or usability require-
ments. In particular, a number of researchers have investigated
how task analytic behavior models can be included in formal
systems analyses to find human-automation interaction issues
that could cause problems (Bolton, 2017a; Bolton et al., 2013).
These techniques are very powerful for safety analyses because
they account for all of the ways that human task behavior can
be performed. However, they do not consider how and why dif-
ferent types of users will use systems differently. If individual
preferences were included, model checking could be used to ex-
plore how types of users will use system features.

We address this here by combining formal task analytic
techniques with utility theory concepts. This allows us to use
model checking to predict how different users will employ sys-
tem features. Below we cover the background necessary for un-
derstanding our approach. We then describe our method and
illustrate its power by using it to analyze a smart thermostat.

BACKGROUND

Formal Methods and Model Checking

Formal methods are tools and techniques for specifying,
modeling, and verifying systems (Wing, 1990). Formal models
describe the behavior of the system being evaluated. Specifica-
tion properties mathematically describe desirable system quali-
ties. Formal verification is the process of mathematically prov-
ing whether the systems always satisfies a specification.

Model checking is a fully automated process to formal ver-
ification (Clarke et al., 1999). In this, a formal model repre-
sents the system as a collection of concurrently executing fi-
nite state machines: variables and transitions between variable
values (states). Specifications use temporal logic (Emerson,
1990) to assert desirable system properties using model vari-
ables, Boolean operators, and temporal operators. Formal ver-
ification is performed by exhaustively searching through the
entire statespace of the system model (often using extremely
statespace-efficient algorithms) to determine if a specification
holds. If it does, the model checker has proven that the system

model satisfies the specification. If it does not, a counterexam-
ple is returned. This shows exactly how the specification was
violated as a trace through the system model’s statespace.

Model checking is widely used in the verification of com-
puter software and hardware (Grumberg & Veith, 2008). It has
also been used increasingly in the human-machine interaction
community (Bolton, 2017a; Bolton et al., 2013). Of particular
relevance to the presented work is the research focused on for-
mal verification with task analytic models.

Model Checking with Task Analytic Models

Task analytic behavior models (or task models) are pro-
duced by a task analysis (Kirwan & Ainsworth, 1992) and rep-
resent the behaviors humans use for achieving goals with a sys-
tem. These are widely used in human factors to design interfaces
(Li, Wei, Zheng, & Bolton, 2017; Paternò, 2000), develop train-
ing (Chu, Mitchell, & Jones, 1995), and drive usability analyses
(Lecerof & Paternò, 1998).

Model checking is good at finding unexpected systems in-
teractions. Thus, researchers have explored its use in finding
human-automation issues that manifest between models of sys-
tem behavior and human task behavior (Bolton, 2017a; Bolton
et al., 2013). This includes evaluating the effect normative be-
havior has on system safety (Aït-Ameur & Baron, 2006; Bolton,
Siminiceanu, & Bass, 2011; Paternò & Santoro, 2001) as well as
included (Bastide & Basnyat, 2007; Fields, 2001) or generated
(Bolton, 2015, 2017b; Bolton & Bass, 2013; Bolton, Bass, &
Siminiceanu, 2012; Pan & Bolton, 2018) erroneous behavior.

In these analyses, the power comes from the model checker
exploring all of the allowable human behaviors in all of the con-
texts where they can possibly occur. This makes them partic-
ularly good at finding unexpected interactions and system fail-
ures. However, a side effect of this is that the analyses do not
account for the particular ways that different types of humans
may use a given device. This means that the formal methods are
ill suited to exploring how demographics of people will choose
to interact with a device or use different features. Below we dis-
cuss the modeling of human decision-making with utility theory,
a technology capable of addressing this issue.

Utility Theory

Utility theory is employed readily in economics and the be-
havioral sciences. It models human preferences and decisions
using a utility or value function (Von Neumann & Morgenstern,
1953). This function dictates preference order between avail-
able options based on how the decision maker thinks options
will achieve his or her goals. As a quantitative tool, a utility or
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value function encapsulates attributes of alternatives and synthe-
sizes them into single values that can be compared: the higher
the value, the more preferable. The overall value/utility of an
alternative depends on the combination of the attribute levels.
These levels are standardized and assigned scaling factors that
correspond to their relative importance to the decision-maker,
reflecting their tradeoff in the decision-making process. The
value function can be expressed in unit-less utility or other units
that have explicit value (such as dollars).

Utility theory has been used to model human decision-
making in a number of different economic and non-economic
applications (Gintis, 2014). It has also been used in formal
verification analyses. However, these applications are predom-
inantly used to prove that self-adapting automation, which uses
utility functions as part of its process, will not reach undesir-
able states (Calinescu & Kwiatkowska, 2009; Cámara, Garlan,
Schmerl, & Pandey, 2015; Lomuscio, Strulo, Walker, & Wu,
2010; Sykes, Heaven, Magee, & Kramer, 2010). To the best of
our knowledge, nobody has used utility theory to model human
decision-making in a formal verification context.

OBJECTIVE
In this work, we set out to enable formal verification analy-

ses to reason about how different classes of users will use device
features. To accomplish this we introduce the ability to model
value functions from utility theory within EOFM. This enables
analysts to describe how different human operators will assign
values to different decision-making options. Modeled users will
choose between options based on which produces the highest
value. In the following, we describe how this capability was
incorporated into EOFM and its supported formal verification
analyses. We illustrate how this can be used to reason about the
feature utilization by evaluating a smart thermostat application.

METHOD
The Enhanced Operator Function Model

In this work, we use the Enhanced Operator Function
Model (EOFM), a formal task modeling language (Bolton &
Bass, 2009, 2017). EOFM is XML-based and represents human
task behavior as an input/output system. Inputs (which are vari-
ables) come from parts of the system that are interacting with
the human, such as the human-machine interface and the envi-
ronment. Outputs are human actions. The task model describes
how human actions are generated based on input variables (rep-
resenting human-observable phenomena from other parts of the
system) and local variables (representing perceptual or cognitive
phenomena). Types and constants can also be defined within an
EOFM to declare variables and drive task behavior. The rela-
tionships between these elements are shown in Figure 1.

An EOFM task is a hierarchy of activities and actions. Ac-
tivities decompose into other activities or, at the lowest level
of the hierarchy, atomic actions. A decomposition operator de-
scribes how activities or actions in a decomposition execute.
EOFM has nine such operators (see Bolton et al. 2011). In this
work, we use two: ord and xor. With an ord operator, all ac-
tivities or actions must execute in the order they appear in the
decomposition. In an xor decomposition, exactly one activity or
action executes. Strategic knowledge associated with activities
is represented with Boolean expressions using constants, input
variables, and local variables. These assert activity precondi-
tions, repeat conditions, and completion conditions.

EOFMs can be rendered visually as tree-like graphs (shown
later in Figure 3). Actions are rectangles and activities are
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Figure 1. The different elements of an EOFM (including the new functions) and
how they interrelate. Types can be specified by analysts (or be inherent to the
EOFM language: Boolean, integer, real) optionally using functions and con-
stants. Input variables, local variables, constants, functions, and human actions
have types. Task behavior can use input variables, local variables, constants,
and functions during task execution. It is capable of modifying human actions
(outputs) and local variables (for cognitive or perceptual actions).

rounded rectangles. A decomposition is an arrow with the op-
erator as its label. The arrow points to a rounded rectangle con-
taining the decomposed acts. Strategic knowledge conditions
connect to their associated activity with the condition logic as
the label. A Precondition is a downward-pointing, yellow tri-
angle; a CompletionCondition is an upward-pointing magenta
triangle; and a RepeatCondition is a recursive arrow.

EOFMs have formal semantics that describe how they ex-
ecute as finite state machines (see Bolton et al. 2011; Bolton,
Zheng, Molinaro, Houser, and Li 2017). These formal semantics
allow EOFMs to be used in model checking analyses. Specifi-
cally, EOFM has a Java-based translator that converts an EOFM
into the input language of SAL (de Moura, Owre, & Shankar,
2003). This allows EOFM to be used as part of a larger system
model to verify system safety properties.

EOFM has been used in a number of model-checking-based
formal verification analyses (see Bolton and Bass 2017). How-
ever, it previously lacked the mechanisms for dynamically trans-
lating inputs, local variables, and constants with a value function
and have this impact task performance.

Extending EOFM with Value Functions
In this work, we extended EOFM to enable the inclusion of

value functions so that they can be used to affect the execution
of task behavior. To accomplish this, we incorporated a function
element into EOFM (see Figure 1). Mathematically, functions
are constant mappings between the types. In fact, formal mod-
eling languages like those supported by SAL (de Moura et al.,
2003) represent functions in this way. Thus, functions were im-
plemented in EOFM by extending the constant element. Now
within the EOFM xml code, an analyst can create functions by
giving a constant parameters and specifying the function’s math-
ematical transformation in the constant’s value.

By giving EOFM the ability to represent functions, func-
tions can influence how tasks execute. This can occur in two
ways. In the first, functions can be used to assign values to
variables at the human action level, either to outputs via human
actions or to represent cognitive or perceptual actions through
assignments to local variables. In the second, functions can be
called as part of a strategic knowledge condition to help deter-
mine when activities can execute.

This second approach specifically relates to how we use
utility theory in our new approach. Specifically, an analyst can
formulate a value function using the new function construct.
Then, this value function can be called in the preconditions of
task model activities to determine if specific activities will exe-
cute based on the conditions and options available to the human
at the time of task execution.
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Figure 2. The smart thermostat application evaluated with our new approach.

With these changes, EOFM’s analysis approach (where the
task model is translated into a larger formal system model de-
scribing the behavior of other system elements; Bolton and Bass
2009, 2017) can be used to reason about how humans with par-
ticular value functions will use system features. Below we show
how this can be done with a smart thermostat application.

APPLICATION
In our smart thermostat application (Figure 2), the user in-

teracts with the device by either scrolling (rotating the silver
ring) and clicking (by pushing and releasing the ring). Users
can use the device to set the temperature. However, most im-
portantly to this work, users can enable and disable the device’s
smart “auto-away” feature. When enabled, this uses the device’s
sensors to determine when users are away and adjusts the heat
to save money. When a user returns home, the device brings the
temperature back up to the user’s selected nominal value.

For the purposes of this analysis, we assume that analysts
have used demographic research to identify the value functions
of two groups of consumers who might use this device. They are
interested in determining (based on the range of temperatures
experienced during the winter in the given area) whether or not
the two groups would use the auto-away feature.

Below we describe the value function and how it was incor-
porated into the application’s model.

Value Function, Task, and System Modeling
The value function in this application is used to determine if

the user wants to enable or disable the auto-away feature based
on the relative tradeoffs between the level of comfort and the
cost of heating associated with feature use during the cold sea-
son. To address this, the task behavior model takes an input
(iEnvironmentTemp) representing the temperature of the envi-
ronment outside the house as a real number. There are also
two constants (cAutoTemp = 50 and cIdealTemp = 71) repre-
senting the minimum temperature (in degrees Fahrenheit) auto-
away will maintain and the ideal temperature for the human user
(respectively). Several functions are used to ultimately compute
quantities that will be of use to the value function.

The first determines what the indoor temperature will be
based on temperature that will be set by the user as the intended
indoor temperature (S) and the temperature outside (E) as:

cIndoorTemp(S,E) =
{

E if E > S
S otherwise.

(1)

The second (based on the average cost of heating the houses of
the target demographic up one degree) computes the cost to heat
the house to the indoor temperature from the outside tempera-
ture (E):

cCost(S,E) = $0.015 · (cIndoorTemp(S,E)−E). (2)

The third (based on the levels of comfort from the international
standard; ISO 2005) represents the value users place on coming
home to a house at the indoor temperature (values are shown for
both versions of the utility functions in the parentheses):

cComfort(S,E)

=


$(0.10,1.00) if 67≤ cIndoorTemp(S,E)< 75
$(0.05,0.50) if 64≤ cIndoorTemp(S,E)< 67
$(0.01,0.10) if 61≤ cIndoorTemp(S,E)< 64
$(0.00,0.00) otherwise.

(3)

Finally, the value function for deciding whether to enable or dis-
able auto-away is computed based on the value of comfort (V ;
calculated using Equation (3)) and the cost (C; calculated using
Equation (2)) associated with a given choice:

cVal(S,E) = cComfort(S,E)− cCost(S,E). (4)
These constants and functions are used by the EOFM task to

determine whether or not to turn the auto-away feature off or on
(Figure 3). This is represented in the precondition of (aChange-
AwaySetting). The user will perform the task if auto-away is off
and the value of turning it on is higher than the value of leaving
it off. The user will also perform the task if auto-away is on
and the value of turning it off is higher than the value of leav-
ing it on. To make the change, the user first exits the temper-
ature display (aExitTempDisplay) by performing the click ac-
tion (hClick). This takes them to the main menu where icons
of various features are listed. The user then navigates through
the icons (aScrollToAutoAway) using the scroll action (hScroll)
until the auto-away icon is selected. By clicking, the user opens
the auto-away menu (aEnterAwayMenu). Then, the user (un-
der aSwitchAutoAwaySetting) scrolls the auto-away options to
switch the feature from off to on or from on to off. Finally, the
user confirms the change and returns to the main menu (aCon-
firmChange) by clicking.

We also modeled the human operator’s task for returning to
the temperature display (though this is not reported).

The EOFM task model was translated into the input lan-
guage of SAL using the state-space-optimized EOFM translator
(Bolton et al., 2017). This was paired with a formal model that
represented how the thermostat responded to user inputs. It also
represented the outside temperature (iEnvironmentTemp) as an
open parameter that could be any real valued Fahrenheit tem-
perature between 0 and 60 degrees.

Model Checking and Results
In these analyses, we wanted to determine if the user would

ever enable or disable auto-away. This was accomplished by
checking two specification properties. The first asserts that auto-
away will never be turned off. This used linear temporal logic
to assert that globally it should never be true that auto-away will
be on and eventually off:

G¬(iAutoAway = On∧F(iAutoAway = Off )). (5)
The second asserts that auto-away will never be turned on:

G¬(iAutoAway = Off ∧F(iAutoAway = On)). (6)
Each property was checked against two versions of the for-

mal model. Each model was identical except for the variation
in the value function resulting from the value options in Equa-
tion (3). Model checking was completed using SAL’s infinite
bounded model checker (de Moura et al., 2004) using a depth
of 30 and the iterative search option. This was performed on
a computer workstation with a 3.60 GHz Intelr Xeonr E5-
1650 CPU with 128 Gigabytes of RAM running Linux Mint.
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                                              > cVal(cCost(cIndoorTemp(cAutoTemp,iEnvironmentTemp),iEnvironmentTemp), cComfort(cIndoorTemp(cAutoTemp,iEnvironmentTemp))))

Figure 3. The EOFM task for changing the auto-away 

feature of the smart thermostat.

All verifications took less than 22 seconds.
For the first model (with the more modest values associated

with user comfort), the specification in Equation (5) proved to be
true and the specification in Equation (6) produced a counterex-
ample. This means that this type of user will always try to turn
the feature on and, if auto-away is on, it will never be turned
off. For the second model (where users place a higher value
on their comfort), the specification in Equation (5) produced a
counterexample and the specification in Equation (6) proved to
be true. This means that this type of user will always try to turn
the feature off and, if auto-away is off, it will never be turned on.

DISCUSSION

This work has introduced a new method for integrating
value function concepts from utility theory into EOFM tasks.
This allows task analytic modeling concepts to be used syner-
gistically with utility-based decision theory. In particular, in this
work we showed how this could be used to predict how different
types of users will exploit features in a device.

The results of the smart thermostat case study demonstrate
the capabilities of this approach. We found that one user de-
mographic in a given area will always use the auto-away fea-
ture. Further, we found that another demographic (which more
highly values comfort) will never use it. While this application
is simple, it is illustrative in that it shows how our method could
be used in the analysis of realistic and potentially more compli-
cated applications.

Our approach has a number of implications for future re-
search. These are discussed below.

Additional Model Checking Analyses
In the presented application, we used formal verification

to determine if users with different value functions would use
features of the device. However, other analyses are possi-
ble. For example, our method could be used to identify de-
sign features. Specifically, the default auto-away temperature
(cAutoTemp = 50) can impact how comfortable people will be
when they get home and thus influence their use of auto-away.
Analysts could use model checking to discover what auto-away
temperature would ensure that all of the considered user types
will always employ it. Our method could also be used to con-
sider how different environments will impact feature utiliza-
tion. For example, the range of possible outside temperatures
(iEnvironmentTemp) could be changed to reflect different re-
gions in the country. Conversely, the function for computing
the cost associated with heating the house could be modified
to reflect different types and sizes of house. In both situations,
this method could be used to determine how the different user
types would use features in the different conditions. Future work
should further explore the analyses capabilities of our method.

Other Models for Human Judgment and Decision-Making
Utility theory was appropriate for modeling human

decision-making in the presented application due to its eco-
nomic nature. However, not all human decision-making is ap-
propriate for utility theory (Gintis, 2014). For example, humans
may make decisions based on judgments derived from environ-
mental cues or how much they trust automation based on its his-
tory of behavior. Such scenarios would be better represented us-
ing judgment analysis techniques such as the lens model (Cook-
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sey, 1996) or predictive models of human operator trust (Lee &
Moray, 1992) (respectively). However, the extension of EOFM
presented here should allow different types of functional models
to be accounted for in EOFM tasks. This would allow analysts
to model human decision making in different contexts, using the
appropriate model, and evaluate the impact these could have on
system safety and task performance. Future work should ex-
plore how these and other human performance models can be
incorporated into EOFM.

Automated Test Case Generation
Model checking can be used for purposes beyond verifica-

tion. In particular, it can assist in automated test case generation
(Ammann & Offutt, 2016). This is a formal process that uses
the ability of model checkers to produce traces to create tests
that can be executed on an actual system implementation. The
nature of this process is such that the tests produced can be guar-
anteed to see all of the conditions an analyst specifies in cover-
age criteria. Such tests have two purposes. First, they can be
used to validate that a system implementation is consistent with
the formal model and thus all of the properties verified against
the model are true in the system. Second, analysts can collect
metrics during the execution of the test that were not possible to
represent in the formal model. For example, a test generated for
a human interactive system could be run with real people who
can subjectively assess the usability of the system. In previous
work (Li & Bolton, ND) we introduced a formal method for
generating test using EOFM tasks and formal system models.
This approach could be used synergistically with the modeling
techniques discussed here to generate complete test sequences
for different classes of users. This would give analysts an un-
precedented ability to run tests for evaluating the experiences of
different users. Future work should research such an approach.
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