
A Taxonomy of Forcing Functions for Addressing Human
Errors in Human-machine Interaction*

Pengyuan Wan1 and Matthew L. Bolton1

Abstract— A forcing function is an intervention for con-
straining human behavior. However, the literature describing
forcing functions provides little guidance for when and how
to apply forcing functions or their associated trade-offs. In
this paper, we address these shortcomings by introducing a
novel taxonomy of forcing functions. This taxonomy extends
the previous methods in four ways. First, it identifies two levels
of forcing function solidity: hard forcing functions, which ex-
plicitly enforce constraints through the system, and soft forcing
functions, which convey or communicate constraints. Second,
each solidity level is decomposed into specific types. Third, the
taxonomy hierarchically ranks forcing function solidities and
types based on trade-offs of constraint and resilience. Fourth,
for hard forcing functions, our taxonomy offers formal guidance
for identifying the minimally constraining intervention that
will prevent a specific error from occurring. We validated the
ability of our method to identify effective error interventions
by applying it to systems with known errors from the literature.
We then compared the solutions offered by our method to
known, effective interventions. We discuss our results and offer
suggestions for further developments in future research.

I. INTRODUCTION

One method for preventing human errors from causing
problems is to use forcing functions. Forcing functions are
constraints enforced on human inputs to a system that prevent
errors from occurring [1]. For example, to ensure that a driver
does not drive away from a fuel pump with the nozzle still
in the car, some modern cars will not allow the engine to
start unless the gas cap is in place.

While forcing functions are effective, they need to be used
with caution. This is because, in limiting what behaviors
humans can perform, system resiliency may be sacrificed
[2]: the human ability to creatively respond to situations
unanticipated by designers may be restricted. Additionally,
forcing functions are loosely defined in the literature. This
makes it difficult for engineers to identify what forcing
function they should employ to address a given error and any
associated effectiveness and resilience trade-offs.

Advances in human error taxonomies [3] have given
engineers an unprecedented ability to formally understand
how, why, and where (in a task model) erroneous behaviors
occur [4]. In this work, we attempted to build off of this
contribution by introducing a taxonomy of forcing functions
that will allow analysts to use insights that can be gained from

*This material is based upon work supported by the National Science
Foundation under Grant Nos. 1918314.

1Pengyuan Wan and Matthew L. Bolton are both with the Department
of Industrial and Systems Engineering at the University at Buffalo, the
State University of New York, 342 Bell Hall, Buffalo, NY 14260, USA
mbolton@buffalo.edu

this modern taxonomy to select forcing function interventions
with full knowledge of resilience trade-offs.

II. BACKGROUND

Below we cover background on forcing functions and
related barrier concepts. We also describe the task-based
taxonomy of human error.

A. Forcing functions and Barriers

According to Norman [1], [5], forcing functions are
physical constraints that can be implemented using: interlocks,
lockins, and lockouts. An interlock forces operations to
occur in a proper sequence. A lockin keeps an operation
active, preventing someone from prematurely stopping it.
A lockout prevents someone from entering a place that is
dangerous or prevents a specific error from occurring. Beyond
forcing functions, Norman also describes additional categories
of constraints on human behavior: cultural, semantic, and
logical. Cultural constraints use social situations and norms
to limit behavior. Semantic constraints use human situational
knowledge to regulate behavior (e.g., making computer file
constructs and operations similar to those of real files).
Logical constraints use logical relationships between behavior
and the system to limit human error (e.g., having a part left
over during equipment assembly indicates an error).

Barriers [6] also provide guidance for addressing human
errors. Barriers are functions that protect against the uncon-
trolled transportation of mass, energy, or information. When
applied to human-machine interaction, a barrier is used to
prevent user operations. There are generally four types of
barriers: physical or material barriers, functional barriers,
symbolic barriers, and incorporeal barriers. Physical barriers
physically prevent an error from occurring. Functional barriers
create a precondition for an action, where the precondition
must be met before the user can perform the action. Symbolic
barriers provide information to users so that they know what
actions they should or should not perform. Finally, incorporeal
barriers rely on human knowledge for direct enforcement (e.g.,
training, rules, regulations, and laws).

There are tradeoffs between barrier types [6]. In general,
physical and functional barriers are more restrictive than
symbolic or incorporeal ones, which can often make them
more effective, robust, and reliable. However, this often
comes with the disadvantage of implementation being more
expensive and time consuming.

Multiple barriers and redundancy can improve effectiveness
[7], [6]. Physical or functional barriers can back up symbolic
or incorporeal barrier systems. Alternatively, symbolic or

2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
17-20 October, 2021. Melbourne, Australia

978-1-6654-4207-7/21/$31.00 ©2021 IEEE 3134

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
s,

M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C

) |
 9

78
-1

-6
65

4-
42

07
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SM
C

52
42

3.
20

21
.9

65
87

21

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

incorporeal forcing functions can be used to discourage
users from employing workarounds for functional or physical
barriers [6].

There were three main limitations of these approaches.
First, none provide clear guidance for how their concepts
can be used to fix specific human errors. Forcing functions
[1] do not describe how each forcing function constraint
should be applied to most effectively address specific errors.
The barrier literature does provide guidance for how to
implement the different constraint concepts. However, these
recommendations are very general and not specific to human
error. Second, neither method provides a sense of trade-off
in terms of solutions’ impact on resilience: the ability of a
system to maintain or regain stable operation after or during
a failure [8]. This is important because the ability of humans
to deploy creative solutions to problems during unexpected or
unusual circumstances is often a source of system resilience.
Thus, strict constraints on human behavior can negatively
affect resilience. Third, forcing functions and barriers contain
similar concepts, but both contain information that is not in
the other. This can make it difficult for analysts to know what
concept is appropriate in a given situation.

B. The Task-Based Taxonomy of Human Error

In practice, engineers will likely want to understand both
the phenotype [9] and genotype [10] of an error. They will also
want specific information about the human’s goals and what
they were (or were not) attending to when the error occurred.
This synthesis was the basis for the task-based taxonomy
of human human error [3]: a formal system that unifies the
genomenological and phenomenological by classifying errors
based on where in a hierarchical task model the divergent
behavior occurred. Specifically, by knowing exactly where
in a task a human’s behavior diverged, an analyst will know
how the erroneous behavior manifested (its phenotype), what
information (task or strategic knowledge contained in the
structure) the human had to incorrectly attend to to perform
the error (its genotype), and the context of the error (what
goals the human was trying to achieve) based on the location
of the error in the task hierarchy.

The specifics of the task-based taxonomy are formulated
using the Enhanced Operator Function Model (EOFM) [11],
[12]. This is because EOFM uses standard hierarchical task
model concepts while also having a formal semantics (a
mathematical description of the behavior encompassed by
the task model). The formal semantics are useful in error
classification because any divergence from the normative
task will inherently violate the semantics. The nature of
the violation specifically indicates what information was
improperly attended to (which can include information about
task execution itself, in the person’s memory, or perceived
from the environment). The semantics are also useful because
knowing where an error occurs enables an analyst to to
determine what set of behaviors will follow the violation.
For example, if a person skips an activity that is in a
sequence, then the following activity in that sequence will
occur immediately after the error.

While there are multiple levels of error classification in
the task-based taxonomy, this research will only focus on the
error mode level. Specifically an activity can execute when it
should not (an intrusion), transition to done when it should
not (an omission), restart when it should not (a restart), and
not transition when it should (a delay). The taxonomy further
decomposes all of these concepts to understand why and
how these errors occur based on which semantic information
(strategic or task knowledge) was violated.

III. OBJECTIVE

Given the disparate concepts and lack of guidance for how
to apply barrier and forcing functions to address human errors,
engineers could find it difficult to determine how to best
improve system safety without compromising resilience. In
this research, we sought to address these issue. To accomplish
this, we created a unified taxonomy of forcing functions
that combines the two concepts [1], [6]. Additionally, we
addressed the major limitation of both by using the formalism
offered by the task-based taxonomy of human error to reason
about the behaviors associated with a given, unwanted error.
We then use this to determine how to minimally constrain
human behavior to prevent the error and thus minimally
impact resilience. In what follows, we describe our taxonomy
and show how interventions can be identified using it.

IV. A TAXONOMY OF FORCING FUNCTION

Figure 1 shows our forcing function taxonomy. The
taxonomy is hierarchical in that it classifies interventions
based on how restrictive they are (and thus how many potential
errors/actions they prevent). This has an inversely proportional
relationship with resilience, here grossly indicated by the
number of behaviors/actions allowed. The taxonomy first
breaks forcing functions down based on their “solidity,” where
forcing functions can be “hard” or “soft”.

Hard forcing functions prevent an error by having the
human-machine interface specifically prevent the associated
erroneous actions from occurring. They are thus compatible
with Norman’s [1] original concept of the the forcing function
as well as Hollnagel’s physical and function barriers [6].

Hard Forcing Function
Prevent an error by having the
human-machine interface
specifically prevent actions
associated with a given error

Soft Forcing Function
Reduce the likelihood of a given
error via design improvements
to organizational, physiological,
and environmental elements

Interlock
Only allows actions to be performed
in a correct order

Lockin
Only allows actions for the correct
task, all other actions are not allowed

Lockout
Locks out actions associated with the
error, all other actions are allowed

Symbolic Forcing Function
Changes the design of the interface or
environment to constrain user behavior

Incorporeal Forcing Function
Changes the way the human thinks
about his/her task through training,
regulations, laws, and enforcement

Solidity Type Tradeoffs

R
es

tr
ic

tio
n

/ F
ew

er
 O

pt
io

ns
 fo

r
E

rr
or

R
es

ili
en

ce
 /

M
or

e
H

um
an

 A
ut

on
om

y

Fig. 1. The taxonomy of forcing functions.

3135

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

Forcing functions with soft solidity are those that do not
explicitly restrict human actions. Rather, they attempt to
prevent errors by removing the organizational, psychological,
and environmental conditions that cause the error. This
makes them compatible with symbolic and incorporeal barrier
systems [6] as well as Norman’s extended discussion on
cultural, semantic, and logical constraints.

The solidity levels are further broken down into specific
forcing function types, each of which also falls along the
restrictive/resilience continuum (see Fig. 1).

Compatible with Norman’s categories of forcing functions,
hard forcing functions have three levels: interlock, lockin,
and lockout. An interlock is a forcing function where the
human-machine interface only allows actions to be performed
in a specific or set of specific correct orders (presumably
as dictated by the operator’s normative task). It is the most
restrictive of the hard forcing functions. A lockin is a forcing
function where the human-machine interface only allows
actions associated with the correct task that is being performed.
It is thus less restrictive than an interlock because it does
not enforce an action order. Finally, a lockout is a forcing
function that locks out or prevents the performance of all
actions associated with an erroneous behavior. Given that it
only restricts behavior associated with a given error, a lockout
is the least restrictive of the hard forcing functions.

Soft forcing functions are broken down into two types: sym-
bolic and incorporeal. Symbolic forcing functions prevent an
error by changing the design of the interface or environment
so that the human will be able to more readily identify correct
behaviors. These are consistent with symbolic barriers [6] or
logical constraints [1]. There can be many different types of
symbolic forcing functions which could include things like
improved information displays, warning signs, and decision
support systems. Incorporeal forcing functions prevent an
error by changing the way the human thinks about the task.
These are consistent with incorporeal barriers [6] and semantic
and cultural constraints [1]. These forcing functions are meant
to encompass things like training, regulations, laws, cultural
norms, and enforcement. Generally, incorporeal functions
are less restrictive than symbolic ones because they strictly
rely on changing information in a human’s mind rather than
something in the physical world.

Hard forcing function types are mutually exclusive solu-
tions: more restrictive forcing functions inherently encompass
the behavior of less restrictive ones. However, no such
restriction exists for soft forcing functions. In fact, multiple
symbolic functions, incorporeal functions, or combinations
of them could be used to address a given error. Additionally,
although potentially redundant, these can be used alongside
any selected hard forcing function. For example, you could
provide a user with (symbolic) information that makes it clear
why a hard forcing function is being enforced.

V. HARD FORCING FUNCTION SELECTION

Based on the hierarchical arrangement of forcing function
concepts from above (see Fig. 1), we know what the tradeoffs
are between interlocks, lockins, and lockouts. However, this

representation does not give us specific guidance about which
actions need to be locked out, locked in, or interlocked. In
what follows, we describe how we can use an EOFM’s formal
interpretation of task behavior and its task-based human
erroneous behavior taxonomy to reason about what and how
errors occur. We then use this information to identify how
to minimally constrain a human’s task with lockout, lockin,
and interlock interventions to prevent specific errors from
occurring. Below we breakdown how hard forcing function
interventions can be identified for each of the three error
modes from the task-based taxonomy.

A. Intrusion

In the following discussion, let A be the set of actions
associated with performing an activity normatively and let B
be the set of actions associated with an erroneous, intruding
activity. If the intruding actions are a subset of the normative
actions, or they are equal, (B ⊆ A), then interlock is the
only option. This is because there are no actions in B that
distinguish it from A, thus execution order and context is
the only way to distinguish the execution of B from A. This
relationship is illustrated in Fig. 2(a).

If the actions of A are a subset of B’s (A⊂ B; Fig. 2(b)) or
neither are subsets of each other but have overlap (A∩B 6=
/0∧A * B∧B * A; Fig. 2(c)), then there are actions in B
that are different from A. In this situation, all three hard
forcing functions are options. Thus, only a lockout of B is
strictly required to prevent the error. In this case, analysts
will need to select the solution that best suits their desired
tradeoffs between resilience, options for error, and ease of

A
B

A
B

A
B

A

B

B
A

B
A

B
A

B
A

BA BA A B BA

BA BAA BA BA

Interlock Lockin Lockout

(a)

 B ⊆ A

(b)

 A ⊂ B

(c)

 A ∩ B ≠ ∅
 ∧ A ⊈ B

 ∧ B ⊈ A

(d)

 A ∩ B
 = ∅

l Condition l

Fig. 2. The left column shows the possible set relationships between
normative activity actions A (green) and those associated with the erroneous
activity B (red). The three additional columns show how actions are
constrained for each of the hard forcing function options for the associated
set relationships. In these, aqua areas show which actions are constrained
by the associated forcing function. Aqua areas with diagonal lines indicate
interlock constraints. Red Xs show when a function is not effective.

3136

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

implementation. Given the overlap between A and B, it may
be conceptually simpler to lockin to A instead of selectively
locking out the actions of B that are not in A or interlocking.

If A and B have no shared actions (A∩B = /0; Fig. 2(d)),
all three hard forcing functions are also an option and thus a
lockout is sufficient to completely prevent the error. Because
there is no overlap between A and B, a lockout should be
no harder to implement than an interlock or lockin. Thus,
a lockout should generally be preferred because it is less
restrictive / more resilient than the other options.

B. Omission

The forcing functions for addressing omission error modes
use the formulation for intrusions. Specifically, the omission
of any activity or action will ultimately be followed by the
performance of some activity or action that would have
come after the omitted behaviors (which should be easily
determined from accident reports, examination of task models,
or formal analysis of said task models [11], [12]). Thus,
omission errors can be treated as intrusion errors, where A
is the activity that you are attempting to prevent from being
omitted and B is the activity (or activities) that could occur
following A’s omission. With this formulation, the guidance
provided for intrusions will address omission errors.

Note that the only exception to the above procedure occurs
when a human omits the last set of actions in a task without
there being any additional behaviors following it. Such a
situation could arise due to a postcompletion error (when
primary goals are satisfied before actions for performing
subsidiary goals can occur [13]). In this situation, the task
would need to be reordered to ensure that the task only
completes with the satisfaction of its primary goal (see
[14] for a formal description of this intervention approach).
Alternatively, soft forcing functions (such as alarms, additional
information displays, or training) may be required to ensure
humans are properly attending to task completion.

C. Restart

The forcing functions for restarts are handled almost
identically to omission errors. For errors that occur with
the restart error mode, A is the activity at which an erroneous
restart was initiated and B is the activity that initiates the
restart. Using this formulation, an analyst would then follow
the guidance for intrusions.

VI. APPLYING THE TAXONOMY

When using the taxonomy to address human errors with
hard forcing functions, we assume that the analyst has
identified the normative activity within a task that was
disrupted. He or she should also also identify the intruding
erroneous activity. As the discussion above makes clear, these
designations manifest for intrusion, omission, and restart
error modes. Then, based on the parameters outlined under
intrusions, the analyst should be able to determine if an
interlock, lockin, or lockout is a viable solution, and the
minimal restrictions for implementing them. At this point,
it is at the analysts discretion which intervention to use.

ord

Pickup Screw Screw In Screw

Screw
Installed

Part
Arrives

Install Screw

Screw Not Installed

Fig. 3. Screw install task model rendered in the visual notation of
EOFM ([11], [12]). Activities are rounded rectangles, actions are pointed
ones. Preconditions (yellow triangles), completions conditions (magenta
triangles), and repeated conditions (recursive arrows) are attached to
activities and labeled with condition information. Arrows below activities
point to decompositions that define sub-activities or actions. Operators on
decomposition arrows indicate execution of subtasks in order from left to
right (ord) or that one or more can execute in any order (or par).

While it is true that there could be mitigating, contextual,
or implementation circumstances that might suggest analysts
choose a more restrictive solution (such as an interlock), the
taxonomy makes it clear that doing so will come at a potential
loss of resilience. Thus, it is our general recommendation
that analysts choose the effective intervention that puts the
least restriction on human actions. Given the non-mutual-
exclusivity of soft forcing functions, any number of these
could be applied with or without hard forcing function
interventions. In the next section we provide examples that
demonstrate how our taxonomy could be used to identify
effective interventions.

VII. ILLUSTRATIVE EXAMPLES AND VALIDATION

In this section, we present two illustrative examples to
show how our forcing function taxonomy can be effectively
used when attempting to eliminate a human error in a
system. These examples were specifically drawn from the
literature on poka-yoke [15] (a Japanese design philosophy
which means “mistake-proofing”). This allowed us to provide
some validation of our approach by comparing the solutions
produced by our method to ones that have been successful
in the field.

A. Example 1: A Screw Installation Task

Consider a system where a sequence of devices are
delivered to the human on a conveyor belt. It is the human’s
job to perform an assembly task where a screw is installed
that holds each device together.

Figure 3 shows the associated task model (rendered with
EOFM [11], [12]). When the device arrives to the human on
a conveyor, he or she will install a screw by first picking up
a screw out of a box and then screwing it into the device.

In this system, workers will sometimes fail to attach a
screw to the device by missing a device on the conveyor.
This is an omission, where the entire normative task (Fig. 3;
A) is the omitted activity. Thus, the intruding activity is the

3137

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

performance of that same task on the next device on the
conveyor (Fig. 3; B). This constitutes a situation where A = B
and thus, according to our approach (Fig. 2(a)), only an
interlock will be effective. This implies that steps must be
taken to ensure that no device can be allowed to pass by on
the conveyor without the screw being installed.

If we look at the poka-yoke solution to this problem [15],
mechanisms were installed to ensure that the convey system
can detect whether the worker has picked up a screw for a
device as it is being conveyed past. If the worker fails to
pick up a screw, then the conveyor is stopped. Thus, the
neglected device is the one immediately available to the
worker, ensuring that it is not skipped.

Thus, our approach dictated an interlock solution to address
the omission error and this is consistent with the presented
poka-yoke solution, which specifically forces an order of
actions on human workers to avoid an omission.

B. Example 2: A Part Collection Task

For the the second example, consider a situation where a
worker first reads model identifiers off of a specification chart
and then goes to a shelf of boxes and selects the parts with
the given identifiers out of the appropriate boxes (one box
per identifier). The worker would then install the parts into a
larger system. For this procedure, it was observed that workers
occasionally installed the wrong parts. A deeper analysis
revealed that this error occurred during when selecting parts
from the shelf (not during chart consultation).

The model for performing this task is shown in Fig. 4. The
error of a worker selecting the wrong part would constitute an
intrusion. In this situation, the correct activity A is the activity
for picking up a part from a correct box. The intruding activity
B is the activity for picking up a part from any incorrect
box. In this situation, there should be no overlap between
the correct and incorrect activities (the condition described
in Fig. 2(d)), thus a lockout will provide the minimally
constraining solution. For the example, this means that the
system must prevent the worker from picking up parts from
boxes other than the ones indicated on the chart.

In the poka-yoke solution to the problem [15], all of the part
boxes are given automated lids which unlock and open when
a new specification chart is loaded that requires the given
part. The lids would automatically close and lock when a
different, incompatible chart was loaded. Thus, the poke-yoke
solution to the incorrect part selection problem is compatible
with the lockout solution identified by our approach.

VIII. DISCUSSION AND CONCLUSION

We have made a number of significant contributions in this
research. (1) We presented a new forcing function hierarchy
that describes the tradeoffs between the restriction and
resilience offered by different forcing function concepts. This
explicitly extended concepts from the larger forcing function
and barrier literature. (2) Our taxonomy classifies forcing
functions into two broad categories: hard forcing functions
(those that prevent certain actions from occurring) and soft
forcing functions (those that discourage actions without hard

...

Get Parts

for Model Y

Read Part List

from Chart

aRetreive

Outputs

or_par

Need parts for
Model Y

Have parts for
Model Y

Need parts for
Model Y

ord

Pickup

Part 1

Have
Part 1

Need
Part 1 Obtain Part

from Box 1

ord

Pickup

Part N

Have
Part N

Need
Part N Obtain Part

from Box N...

Have
parts for
Model Y

ord

...

Fig. 4. The original task for selecting parts for a given system model. The
worker first reads the part specification from a chart and them picks up parts
from the appropriate boxes in the shelf.

constraints). (3) The taxonomy identified tradeoffs between
resilience and constraint effectiveness between hard and
soft forcing functions, as well as sub-categories of forcing
functions within each designation. (4) For hard forcing
functions, we presented a novel formal approach based on
set theory (enabled by formal interpretations of task models
and the task-based error taxonomy) that provides guidance
for choosing the most appropriate hard forcing function.
(5) Through examples, we showed how method application
could be used to identify specific interventions based on the
activities (and associated actions) that need to be constrained.
These applications also provided evidence of face validity by
showing that our method recommends interventions that are
consistent with known solutions.

Below we further discuss our results based on the method
limitations, other potential applications, and future research.

A. Limitations

One limitation of our method is the generality of produced
hard forcing functions solutions. The taxonomy and formal
method do not recommend specific design implementations
of the recommended forcing function behavior. This means
that designers will still need to develop a detailed approach

3138

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

that prevents the identified erroneous actions and/or activities
from executing. Future research should investigate methods
for making recommendations more application specific.

Another limitation arises because of the assumptions of the
hard forcing function identification process. First, the analysts
must have an accurate system hierarchical task model. Second,
the analysts must know the exact erroneous behaviors they
are eliminating. Practically, this may not be common. Thus,
future work should investigate how standard task analytic
methods can be better integrated into industrial practice.

Finally, the current formulation of our taxonomy and
method does not provide recommendations for deploying
soft forcing functions. Future work should investigate how
information contained in hierarchical task models can be
used to recommend soft function interventions as additions
or alternatives to hard forcing function options. In particular,
hard forcing function implementation must be done carefully.
This is because the ability of users to understand what actions
are being constrained (and why that constraint is occurring) is
critical to system safety. Specifically, this helps avoid mode
confusion, automation surprise, and associated additional
human errors [16]. Soft forcing functions have the potential
to offer alternatives to hard functions without such concerns,
or could be used with hard forcing functions to help humans
understand their operational context. Such uses of soft forcing
functions should be the subject of future research.

B. Future Works

1) Automatic Interface Repair: This research is part of a
larger project to improve the reliability of human-machine
interaction through automatic, formal methods for assessing
reliability and repairing human-machine interfaces. The
formal method for identifying forcing function interventions
should serve as the basis for identifying automatic repairs
for errors that reliability analysis [17], [18] will identify.
Future work should investigate how forcing functions could
be automatically applied to a human-machine interface design
in automated repair, similar to the way that interlock designs
could be generated by transforming task models [19].

2) Human Behavior Tracking and Error Detection: There
are different ways to implement all of the hard forcing
function concepts from our hierarchy. In a situation with
available computational resources, all hard forcing functions
could be generically implemented through the use of task
behavior tracking. In such a situation, the machine/interface
would be able to follow what task (and activities and
actions within the task) the person is performing based on
environmental or system conditions and what human actions
have been performed. Such a system could allow or disallow
human actions based on what task is being performed and
the hard forcing function concept designers wish to enforce.
EOFM, as a task behavior formalism, should be capable of
being used in such a system. The OFM (operator function
model; EOFM’s predecessor), was used for tracking human
behavior in intelligent tutoring systems [20]. Thus, such
a system should be possible with EOFM and should be
investigated in future efforts.

It is conceivable that soft forcing functions could also
benefit from task tracking. For example, tracking could
be used to enhance or change display concepts based on
operational context; make the endogenous task information
(task information that should presumably exist in the person’s
mind) exogenous (explicitly represented in the interface) in
specific situations; provide humans with feedback when they
appear to go off task either during actual system operations
or during training; or help suggest error recovery actions.

REFERENCES

[1] D. Norman, The design of everyday things: Revised and expanded
edition. Basic books, 2013.

[2] R. Amalberti, “Optimum system safety and optimum system resilience:
Agonistic or antagonistic concepts?” in Relience Engineering, E. Holl-
nagel, D. D. Woods, and N. Leveson, Eds. Farnham: Ashgate
Publishing, Ltd., 2006, ch. 16, pp. 253–271.

[3] M. L. Bolton, “A task-based taxonomy of erroneous human behavior,”
International Journal of Human-Computer Studies, vol. 108, pp. 105–
121, 2017.

[4] M. L. Bolton, K. A. Molinaro, and A. M. Houser, “A formal method
for assessing the impact of task-based erroneous human behavior on
system safety,” Reliability Engineering & System Safety, vol. 188, pp.
168–180, 2019.

[5] C. Lewis and D. A. Norman, “Designing for error,” in Readings in
Human–Computer Interaction. Elsevier, 1995, pp. 686–697.

[6] E. Hollnagel, “Risk+ barriers= safety?” Safety science, vol. 46, no. 2,
pp. 221–229, 2008.

[7] F. Vanderhaegen, “Human-error-based design of barriers and analysis of
their uses,” Cognition, Technology & Work, vol. 12, no. 2, pp. 133–142,
2010.

[8] E. Hollnagel, “Resilience – the challenge of the unstable,” in Resilience
engineering: Concepts and precepts, E. Hollnagel, D. D. Woods, and
N. Leveson, Eds. Farnham: Ashgate Publishing, Ltd., 2006, ch. 1,
pp. 9–19.

[9] ——, “The phenotype of erroneous actions,” International Journal of
Man-Machine Studies, vol. 39, no. 1, pp. 1–32, 1993.

[10] J. Reason, Human error. Cambridge university press, 1990.
[11] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach

to model checking human-automation interaction using task-analytic
models,” IEEE Transactions on Systems, Man, and Cybernetics, Part
A, vol. 41, no. 5, pp. 961–976, 2011.

[12] M. L. Bolton and E. J. Bass, “Enhanced operator function model
(EOFM): A task analytic modeling formalism for including human
behavior in the verification of complex systems,” in The Handbook of
Formal Methods in Human-Computer Interaction, B. Weyers, J. Bowen,
A. Dix, and P. Palanque, Eds. Cham: Springer, 2017, pp. 343–377.

[13] M. D. Byrne and S. Bovair, “A working memory model of a common
procedural error,” Cognitive Science, vol. 21, no. 1, pp. 31–61, 1997.

[14] P. Curzon and A. Blandford, “Using a verification system to reason
about post-completion errors,” in Design, Specification and Verification
of Interactive Systems, 2000.

[15] S. Shingo, Zero quality control: source inspection and the poka-yoke
system. CRC Press, 1986.

[16] A. Degani and M. Heymann, “Formal verification of human-automation
interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[17] X. Zheng, M. L. Bolton, and C. Daly, “Extended SAFPH� (systems
analysis for formal pharmaceutical human reliability): Two approaches
based on extended cream and a comparative analysis,” Safety Science,
vol. 132, 2020.

[18] M. L. Bolton, X. Zheng, and E. Kang, “A formal method for including
the probabilityof erroneous human task behavior in system analyses,”
Reliability Engineering and System Safety, 2021, in Press.

[19] M. Li, J. Wei, X. Zheng, and M. L. Bolton, “A formal machine–learning
approach to generating human–machine interfaces from task models,”
IEEE Transactions on Human-Machine Systems, vol. 47, no. 6, pp.
822–833, 2017.

[20] R. W. Chu, C. M. Mitchell, and P. M. Jones, “Using the operator
function model and ofmspert as the basis for an intelligent tutoring
system: Towards a tutor/aid paradigm for operators of supervisory
control systems,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 25, no. 7, pp. 1054–1075, 1995.

3139

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:22:40 UTC from IEEE Xplore. Restrictions apply.

