
Evaluating Human-automation Interaction Using
Task Analytic Behavior Models, Strategic

Knowledge-based Erroneous Human Behavior
Generation, and Model Checking

Matthew L. Bolton
San José State University Research Foundation

NASA Ames Research Center
Moffett Field, CA 94035

matthew.l.bolton@nasa.gov

Ellen J. Bass
Department of Systems and Information Engineering

University of Virginia
Charlottesville, VA 22904

ejb4n@virginia.edu

Abstract—Human-automation interaction, including erroneous
human behavior, is a factor in the failure of complex, safety-
critical systems. This paper presents a method for automatically
generating task analytic models encompassing both erroneous
and normative human behavior from normative task models by
manipulating modeled strategic knowledge. Resulting models can
be automatically translated into larger formal system models
so that safety properties can be formally verified with a model
checker. This allows analysts to prove that a human automation-
interactive system (as represented by the formal model) will
or will not satisfy safety properties with both normative and
generated erroneous human behavior. This method is illustrated
with a case study: the programming of a patient-controlled
analgesia pump. In this example, a problem resulting from
a generated erroneous human behavior is discovered and a
potential solutions is explored. Future research directions are
discussed.

Index Terms—Task analysis, formal methods, model checking,
human error, human-automation interaction, system safety.

I. INTRODUCTION

Complex, safety-critical systems involve the interaction of
automated devices and goal-oriented human operators in a
dynamic environment. Human-automation interaction (HAI)
[1] is particularly important to the operation of safety-critical
systems. Erroneous human behavior [2], where the human op-
erator does not follow the normative procedures for interacting
with a system, is often associated with failures. HAI research
has produced a number of analysis techniques and design tools
that can be used to address this problem. However, many of
these traditional techniques are not exhaustive and can miss
potentially dangerous interactions.

Analysis techniques found in formal methods do not have
this limitation. Formal methods are a set of languages and
techniques for the modeling, specification, and verification of
systems (usually computer hardware or software) [3]. Model
checking is an automated approach used to verify that a formal
model of a system satisfies a set of desired properties (a
specification) [4]. A formal model describes a system as a set
of variables and transitions between variable values (states).

Specification properties are typically represented in a temporal
logic (see [5]) where the variables that describe the formal
system model are used to construct propositions. Verification
is the process of proving that the system meets the properties in
the specification. Model checking does this automatically by
searching a system’s entire statespace in order to determine
if these criteria hold. If there is a violation, an execution
trace is produced (a counterexample). This depicts a model
state (a valuation of the model’s variables) corresponding to
a specification violation along with a list of the incremental
model states that led up to it.

In this paper we present a method in which task ana-
lytic behavior models can be used to automatically generate
erroneous human behavior based on the misapplication of
strategic knowledge. The impact of this generated behavior
can be evaluated with model checking. Herein, we first discuss
erroneous human behavior taxonomies and we explore how
they have been used with task analytic behavior models and
formal verification to evaluate safety-critical systems. We then
present our new method and illustrate it with a case study. We
discuss our method and opportunities for future work.

A. Taxonomies of Erroneous Human Behavior

There are a number of different ways to classify and model
erroneous human behavior (see [6]). Of relevance to this
work are Hollnegel’s phenotypes of erroneous action [2] and
Reason’s Generic Error Modeling [7].

Hollnagel [2] classifies erroneous human behaviors based
on their phenotype: how an erroneous behavior observably de-
viates from a normative plan (task) of actions. All phenotypes
of erroneous human behavior are constructed from zero-order
phenotypes, those that represent deviations of behavior for a
single human action in a plan.

Reason [7] classifies erroneous behaviors based on their
cognitive causes, their genotypes. As part of this, Reason
identified a set of erroneous behaviors called slips. Slips occur
when a person fails to notice a system or environmental

978-1-4577-0653-0/11/$26.00 ©2011 IEEE 1788

condition (due to a failure of attention) and thus does not
perform activity or action normatively. A person can omit
an action or high level activity (which may contain multiple
actions) by failing to notice that the necessary conditions for
performing the activity are true, possibly due to interruption or
not attending to information at the right time. A person may
erroneously repeat an action or activity after losing his place
in a task. A person may also have his attention “captured”
by something else (external or internal) which results in him
performing (committing) an inappropriate action or activity
either in addition to or instead of an appropriate one. From a
completely observable perspective, this means that a slip can
manifest as: (a) An omission – the failure to perform all or part
of an activity; (b) A repetition – the repeated performance of
an activity or action; or (c) A commission – the inappropriate
performance of an activity or action.

B. Evaluating the Impact of Erroneous Behavior with Task
Analytic Models and Formal Methods

When designing for HAI, task analytic methods can be used
to describe the normative human behaviors [8]. The resulting
models represent the mental and physical activities operators
use to achieve the goals with the system. These models are
often hierarchical: activities decompose into other activities
and, at the lowest level, atomic actions. Strategic knowledge
(herein modeled as condition logic) controls when activities
can execute and modifiers between activities or actions control
how they execute in relation to each other. Many can be
represented with discrete graph structures [9]–[11].

Researchers have investigated how erroneous human behav-
ior can be manually, systematically incorporated into normative
task analytic behavior models for use in analyses. The majority
of this work has focused on identifying ways of inserting
Hollnagel’s phenotypes of erroneous action [2] into normative
task behavior models [12]–[17]. Paternò and Santoro [14]
presented a different approach for modeling higher order
erroneous behaviors more akin to the physical manifestation of
Reason’s [7] slips. In this technique erroneous behaviors could
occur due to high level activities executing at the wrong time
or failing to execute at the correct time.

Because they can be represented discretely, task analytic
models can be used to include human behavior in formal sys-
tem models along with other system elements including device
automation, human device interfaces, and the operational envi-
ronment [12], [18]–[22]. This allows system safety properties
to be verified in light of the modeled human behavior which
could include any erroneous behaviors incorporated into the
model using the above techniques.

Bolton and Bass [23] developed a more automated ap-
proach. A task structure capable of generating erroneous
human behaviors based on Hollnagel’s zero-order phenotypes
can be automatically incorporated into a normative human task
behavior models by replacing each action in the original hierar-
chy. The number of generated erroneous behaviors (zero-order
phenotypes) is limited by an analyst-specified upper bound.
The resulting task behavior models are automatically translated

into formal system models [11], [23]. A model checker is used
to evaluate the impact of both the original (normative) and
generated (erroneous) behavior on system safety properties.
This method has a distinct advantage over the other erroneous
behavior generation techniques in that it allows erroneous
behaviors that may not have been anticipated by analysts to
be considered. While this technique has proven itself useful
for finding potential problems in human-automation interactive
systems (see [23]), a large upper bound on the number of
erroneous acts would be required to generate the activity level
erroneous behaviors explored by Paternò and Santoro [14].
Such large upper bounds will generate erroneous behavior
patterns analysts may not be interested in.

C. Objectives
We have developed a method that allows analysts to auto-

matically evaluate the impact of erroneous behaviors like those
discussed by Paternò and Santoro [14] without considering the
many uninteresting behaviors generated using the technique
from Bolton and Bass [23] with large upper bounds on the
number of erroneous acts. To accomplish this, we modify the
way strategic knowledge is interpreted in task analytic behavior
models (represented in the Enhanced Operator Function Model
(EOFM) notation [11]) in order to replicate Reason’s [7] slips
and evaluate their impact on system behavior using model
checking. We first describe the infrastructure in which this
technique was implemented. We then present our method. A
patient-controlled analgesia (PCA) pump application is then
used to illustrate how our method can be used to find problems
in a human-automation interactive system. Avenues of future
work are discussed.

II. EOFM AND THE FORMAL VERIFICATION OF HAI
We have developed a method [20] to evaluate HAI formally

using task analytic models of human behavior. The method
utilizes a formal modeling architectural framework which
encompasses models of human missions (i.e. goals), human
task behavior, human-device interfaces, device automation, and
the operational environment [19]. With our method, human
task models are created using an intermediary language called
Enhanced Operator Function Model (EOFM) [11], an XML-
based human task modeling language derived from the Opera-
tor Function Model (OFM) [10], [24]. EOFMs are hierarchical
and heterarchical representations of goal driven activities that
decompose into lower level activities, and finally, atomic
actions (typically observable human actions but cognitive and
perceptual actions are also possible). A decomposition operator
specifies the temporal relationships between and the cardinality
of the decomposed activities or actions (when they can execute
relative to each other and how many can execute).

EOFMs express strategic knowledge explicitly as conditions
on activities. Conditions can specify what must be true before
an activity can execute (preconditions), if it can repeat execu-
tion (repeat conditions), and what is true when it completes
execution (completion conditions).

EOFMs can be represented visually as a tree-like graph (see
examples in Fig. 4). Actions are rectangles and activities are

1789

rounded rectangles. An activity’s decomposition is presented
as an arrow, labeled with the decomposition operator, that
points to a large rounded rectangle containing the decomposed
activities or actions. In the work presented here, three of the
nine decomposition operators [11] are used: (a) ord – all
activities or actions in the decomposition must execute in the
order they appear; (b) or seq – one or more of the activities or
actions in the decomposition must execute and only one can
execute at a time; (c) xor – exactly one activity or action in
the decomposition must execute.

Conditions (strategic knowledge) on activities are repre-
sented as shapes or arrows (annotated with the logic) connected
to the activity that they constrain. The form, position, and
color of the shape are determined by the type of condition.
A precondition is a yellow, downward-pointing triangle; a
completion condition is a magenta, upward-pointing triangle;
and a repeat condition is an arrow recursively pointing to the
top of the activity. More details can be found in [11].

EOFM has formal semantics which specify how an instanti-
ated EOFM model executes (Fig. 1). Specifically, each activity
or action has one of three execution states: waiting to execute
(Ready), executing (Executing), and done (Done). An activity
or action transitions between each of these states based on
its current state; its start condition (startcondition – when it
can start executing based on the state of its immediate parent,
its parent’s decomposition operator, and the execution state of
its siblings); its end condition (endcondition – when it can
stop executing based on the state of its immediate children in
the hierarchy and its decomposition operators); and its reset
condition (reset – when it can revert to Ready based on the
execution state of its parents). See [11] for more details.

Instantiated EOFM task models can be automatically trans-
lated [11] into the language of the Symbolic Analysis Lab-
oratory (SAL) [25] using the language’s formal semantics
where they can be integrated into a larger system model
using a defined architecture and coordination protocol [11],
[19]. Formal verifications are performed on this complete
system model using SAL’s Symbolic Model Checker (SAL-
SMC). Any produced counterexamples can be visualized and
evaluated using EOFM’s visual notation (see [26]).

We next discuss the design philosophy behind our erro-
neous behavior generation method and describe how it can be
automatically incorporated into this infrastructure.

III. ERRONEOUS HUMAN BEHAVIOR GENERATION

The erroneous human behavior generation process repli-
cates the manifestation of Reason’s [7] slips for omitting,
repeating, and committing activities or actions by manipu-
lating EOFM strategic knowledge contained in pre, repeat,
and completion conditions. This was done by making changes
to the EOFM’s formal semantics. In this design, additional
transitions (dotted arrows in Fig. 1) were added in order to
describe conditions in which an activity could erroneously
switch between execution states. Each new transition repre-
sents the erroneousness analog of a non-erroneous transition,
where the erroneous transition is conditioned on the same

Executing Done

Ready

KCount < KMax ˄ startcondition

˄ ¬ (precondition ˄ ¬ completioncondition),

KCount++

KCount < KMax ˄ startcondition

˄ ¬ completioncondition,

KCount++

startcondition ˄ precondition

˄ ¬ completioncondition

startcondition

˄ completioncondition

reset

endcondition ˄ completioncondition

endcondition ˄ repeatcondition ˄¬ completioncondition

KCount < KMax ˄ endcondition ˄ ¬(repeatcondition ˄ ¬completioncondition),

KCount++

KCount < KMax ˄ endcondition ˄ ¬ completioncondition, KCount++

Repetition ComissionOmissionNormative

Types of Transitions

Fig. 1. Modified formal semantics of an EOFM activity’s execution state
presented as a finite state transition system. Arrows with solid lines represent
the original formal semantic transitions. Arrows with dotted lines represent
additional (erroneous) transitions.

start or end condition as well as the negation of any strategic
knowledge (pre, completion, or repeat condition) used by any
non-erroneous transition.

Omissions can occur when an activity completes its execu-
tion too early. An activity can erroneously complete (transition
from Executing to Done) if the end condition is true and the
completion condition is not. This transition is eliminated if an
activity does not have a completion condition.

Omissions can also occur when an activity fails to execute
at all. An activity will erroneously not execute (transition from
Ready to Done) if the start condition is true and the completion
condition is not. This transition persists even if there is no
completion condition.

An erroneous repetition occurs when an activity erroneously
repeats its execution. An activity can erroneously repeat (a
transition from executing to executing) if the end condition is
true and either the repeat condition is false or the completion
condition is true.

A commission occurs when an activity erroneously exe-
cutes. An activity can erroneously execute (a transitions from
Ready to Executing) if the start condition is true and either the
precondition is false or the completion condition is true. This
transition is only relevant if the activity has a precondition.

Too many erroneous transitions could result in an un-
bounded human task behavior model which would defeat the
purpose of having a task model in the first place. Thus, the
analyst can limit the number of erroneous transitions using an
upper bound on the number of erroneous transitions (KMax).
A variable (KCount) then tracks of the number of erroneous
transitions. An erroneous transition can only be undertaken
if the current number of erroneous transitions is less than
the maximum (KCount < KMax). Every time an erroneous
transition occurs, KCount is incremented by one (KCount++).

1790

Our Java-based EOFM to SAL translator [11] was modified
to optionally incorporate these erroneous transitions into the
translated SAL version of an instantiated EOFM. The translator
takes the maximum number of erroneous acts (KMax) as input
from the analyst. KMax is represented as a constant and an
enumerated type is used to represent the range of the possible
number of erroneous transitions. The human operator’s formal
representation has a local variable representing the number
of erroneous transitions that have occurred (KCount). When
writing the transition logic for each activity, this implementa-
tion adds transitions (guards and variable assignments) asso-
ciated with each of the dotted lines in Fig. 11. The variable
assignment for each erroneous transition is identical to its non-
erroneous counterpart in the SAL code, with the exception
that it adds the assignment which increments the erroneous
transition count.

IV. APPLICATION

To illustrate how this method can be used to discover poten-
tial system problems, we present a PCA pump programming
application. A PCA pump is a medical device that allows
patients to control the delivery of pain medication based on
a prescription programmed into it by a human operator (a
practitioner). The HDI for the device (Fig. 2) contains a
dynamic LCD and eight buttons. The practitioner uses the HDI
to program prescription parameters. The “Start” and “Stop”
buttons start and stop the delivery of medication (stop must
be pressed twice) at certain times during programming. The
“On-Off” button is used to turn the device on (when pressed
once) and off (when pressed twice). The LCD display is used
to select display information and specify prescription values.
A prescription value’s name is displayed on the LCD and the
value is presented with the cursor under one of its digits. The
practitioner can change the position of the cursor by pressing
the left and right buttons. He can press the up button to
scroll through the different digit values available at the current
cursor position. The “Clear” button sets the displayed value to
zero. The enter button is used to confirm values and treatment
options.

This pump accepts three prescription values: a PCA dosage
in ml, a minimum delay between dosages in minutes, and a
one hour dosage limit in ml. The device gives practitioners the
option to review prescriptions as many times as they want to
before treatment is administered.

A. Formal Modeling

All of the formal models were constructed using the Sym-
bolic Analysis Laboratory (SAL) language [25]. The formal
system model contained sub-models representing the practi-
tioner’s mission, the HDI, the device automation, and human
task behavior automatically translated from instantiated EOFM
task models using both their normative representation and the
erroneous human behavior generation method presented above.

1This is in addition to the other, normative (un-dotted) transitions from Fig.
1 that are already produced by the translator [11]

00.00 ml

Set PCA
Dosel

>

▲ ►◄

Start

Stop

Clear
C

On/Off

PCA pump

Fig. 2. The PCA pump HDI for programming prescriptions.

1) Human Mission: The practitioner’s mission was to pro-
gram prescriptions into the pump. The PCA pump prescription
was represented by three values: a PCA dosage (Prescribed-
PCA), a minimum delay between dosages (PrescribedDelay),
and a limit on the total dosage delivered in an hour (Pre-
scribed1HourLimit). To control the statespace complexity of
the model, all values (including those in prescriptions) were
represented abstractly as either being Correct or Incorrect.
Every value in a prescription was always represented as
Correct since these were the values operators were attempting
to program into the pump.

2) HDI: The HDI for the device represented the mode of
the LCD (InterfaceState) which indicated when the system
was off (SystemOff), when the dosage could be programmed
(SetPCADose), when the delay could be programmed (SetDe-
lay), when the one hour limit could be programmed (SetLimit),
when prescription delivery could be started or reviewed (Start-
BeginsRx), and when treatment could be administered (Treat-
mentAdministering). It would also display the value (Correct
or Incorrect) associated with the SetPCADose, SetDelay, and
SetLimit states. It received human action inputs from the
eight buttons: PressOnOff, PressStart, PressStop, PressLeft,
PressUp, PressRight, PressClear, and PressEnter.

3) Device Automation: The model of the device automation
controlled the interface states (Fig. 3a) and displayed values
(Fig. 3b) based on internal variables and human actions.

4) HumanTaskBehavior: An instantiated EOFM was cre-
ated encompassing the following high-level goal directed be-
haviors for normatively performing activities with the pump
(Fig. 4): (a) Turning on the pump, (b) Stopping the infusion
of medication, (c) Selecting whether to start or review an
entered prescription, (d) Turning off the pump, and (e) Entering
prescribed values (PCA dosage, delay, and one hour limit).

The tasks most relevant to this discussion are those related
to the programming of prescription values, all of which have
the form shown in Fig. 4e. For a given value X, the correspond-
ing EOFM becomes relevant when the interface for setting that
value is displayed. A practitioner first changes the displayed
value to match that from the prescription. The value can be
changed by selecting different digits with Left and Right button
presses (PressLeft and PressRight), clearing the display by
pressing the Clear button (PressClear), or changing a digit by
pressing the Up button (PressUp). The practitioner repeats the
change activity (a repeat condition) as long as the displayed
value does not match the prescription value. The displayed
value is accepted by pressing the enter key.

1791

 SystemOn

PressOn

SystemOff SetPCADose

InterfaceState = SetX

˄ PressUp

Start

BeginsRx

Treatment

Administering
SetDelay SetLimit

PressEnter PressEnter PressEnter PressStart

PressStop ˄ X (PressStop)PressEnter

PressOff

˄ X (PressOff)

InterfaceState = SetX ˄ PressUp

Incorrect

Correct

InterfaceState = SetX

˄ (PressUp ˅ PressClear)

(a) InterfaceState (b) ValueX

Fig. 3. State transition representation of the formal device automation model. (a) Automation for controlling the interface state. (b) Automation for controlling
the displayed value X where X could represent the PCA dosage, delay, or one hour limit.

The EOFM instance (visualized in Fig. 4) was translated
twice into SAL code and incorporated into the larger formal
system model: once for normative behavior and once for
erroneous human behavior with a maximum of one erroneous
transition. The normative behavior model’s EOFM representa-
tion was 147 lines of code. Its corresponding formal, normative
representation was 478 lines of SAL code. The erroneous
behavior model was 704 lines of SAL code.

B. Specification and Verification

We use linear temporal logic [5] to specify that, when
treatment is administering, the entered prescription should
always match that specified by the mission.

G

 (InterfaceMessage = TreatmentAdministering)

⇒

(
PCADose = PrescribedPCADose
∧ Delay = PrescribedDelay
∧ 1HourLimit = Prescribed1HourLimit

) (1)

When checked against the formal system model with the
translated normative task behavior model, it verified to true in
2 minutes and 46 seconds having visited 4,072,083 states.

The formal system model containing the erroneous human
behavior model produced a counterexample after 1 minute and
24 seconds illustrating the following failure sequence:

1) The pump started in the off state and the practitioner had
to program in a prescription specifying a PCA dose, a
delay, and a one hour limit.

2) The practitioner turned the pump on by pressing the
on/off button, putting the pump’s interface in the PCA
dosage programming state (SetPCADose) with a dis-
played value of Incorrect.

3) The practitioner pressed the up button until the value
was Correct.

4) The practitioner accepted the PCA dosage by pressing
the enter button, causing the pump’s interface to transi-
tion to the delay programming state (SetDelay) with a
displayed value of Incorrect.

5) Rather than perform the activity for changing the de-
lay value until the value was Correct, the operator
erroneously omitted the ChangeDelayValue activity, an
erroneous Ready to Done transition.

6) The practitioner accepted the Incorrect delay by pressing
the enter button, causing the pump’s interface to transi-

tion to the one hour limit programming state (SetLimit)
with a displayed value of Incorrect.

7) The practitioner pressed the up button until the value
was Correct.

8) The practitioner accepted the one hour limit by pressing
the enter button, causing the pump’s interface to tran-
sition to the state for reviewing or starting treatment
(StartBeginsRx).

9) The practitioner starts treatment by pressing the start but-
ton, causing treatment to administer (TreatmentAdminis-
tering). Thus, the specification has been violated with
the pump administering treatment with an unprescribed
delay value.

C. Redesign

We can use our method to investigate potential design
changes that correct the discovered problem. One possibility
is to force the practitioner to review the entered prescription
every time it changes. This can be accomplished by having
the pump keep track of whether or not the practitioner has
reviewed the entered prescription or not and only letting him
start the administration of treatment after an entered or changed
prescription has been reviewed. This change was made to the
PCA pump model, and the resulting model was verified against
(1) with the erroneous human behavior model from above. This
time the specification verified to true in 22 minutes and 31
seconds having visited 46,706,997 states.

V. DISCUSSION

The erroneous behavior generation process presented here
provides a novel means of allowing analysts to automatically
determine when potentially unexpected erroneous behavior
can result in a violation of a system’s safety properties. By
adding erroneous transitions to the formal semantics of an
EOFM’s activity execution state, each representing erroneous
applications of strategic knowledge (pre, repeat, and comple-
tion conditions), we are capable of replicating the observable
manifestation of attentional failures associated with Reason’s
[7] slips: omission, repetition, or commission. The number of
possible erroneous transitions is constrained by a maximum
and a counter preventing generated erroneous behaviors from
making the task behavior model unbounded.

1792

(a) (b)

aTurnOn

Pump

InterfaceMessage = SystemOff

InterfaceMessage /= SystemOff

ord

Press

OnOff

aTurnOff

Pump

InterfaceMessage /= SystemOff

InterfaceMessage = SystemOff

ord

aStop

Infusing

aTurnOff

Pump

ord

Press

OnOff

Press

OnOff

aStart

OrReview

InterfaceMessage = StartBeginsRx

InterfaceMessage /= StartBeginsRx

xor

aStart

Rx

ord

Press

Start

aReview

Rx

ord

Press

Enter

aSetX
InterfaceMessage = SetX InterfaceMessage /= SetX

ord

CurrentValue /= PrescribedX CurrentValue = PrescribedX

or_seq

aChange

Digit

ord

Press

Up

aSelect

NextDigit

xor

Press

Left

Press

Right

aClear

Value

ord

Press

Clear

aAccept

ord

Press

Enter

CurrentValue /= PrescribedX

aChange

XValue

(c) (d)

(e)

aStop

Infusing

ord

Press

Stop

Press

Stop

InterfaceMessage /= TreatmentAdministering

InterfaceMessage = TreatmentAdministering

Fig. 4. Visualization of the instantiated EOFM for normatively programming
prescriptions into the PCA pump. Activities begin with the letter ”a” and
atomic actions do not. Note that (e) represents a generic pattern for program-
ming value X into the pump where X can be PCA, Delay, or 1HourLimit. Also
note that the dotted line around aStopInfusing indicates that aTurnOffPump is
referencing the activity aStopInfusing defined above it.

This new method has an advantage over the work of Paternò
and Santoro [14] in that it allows analysts to automatically

consider the impact of erroneous behaviors they may not have
anticipated. It also allows for the replication of erroneous
behavior that constitute two or more zero-order phenotypes
of erroneous action [2] without needing to consider more
complex combinations, one of the shortcomings of the au-
tomatic method utilized by Bolton and Bass [23]. However,
the two generation techniques produce different erroneous
behaviors. The techniques discussed here can generate higher
level erroneous behaviors based on the incorrect execution of
activities. The method in Bolton and Bass [23] can be used
to generate lower level erroneous acts, and can allow for the
modeling of many more extraneous behaviors as it is capable
of generating erroneous actions that are not associated with the
currently executing activity. Because of this, analysts may wish
to evaluate a system using both techniques, either separately or
together, in order to obtain a more complete system evaluation.

A. Scalability

The significant increase in the verification times and states-
pace sizes between the model containing the normative behav-
ior (2 min. 46 sec. and 4,072,083 states) and the one containing
the erroneous behavior (22 min. 31 sec. and 46,706,997
states) suggests that the erroneous behavior generation method
presented here does not scale well. Thus the method may not
be appropriate for the analysis of much larger systems. Future
work should investigate how our method scales.

Given that the EOFM to SAL translation process includes
all of the intermediary transitions associated with the execution
state of activities [11], it is conceivable that the execution
state of each activity could be represented exclusively as an
expression of the execution state of its actions. Additionally,
the mechanisms that implement the coordination protocol used
to compose the translated human task behavior model with
the other models in the formal system model [19] add to
the statespace. More efficient means of achieving the desired
behavior, possibly with different model composition operators,
may exist. Future work should investigate these and other
methods for potentially improving the scalability of the pre-
sented method.

B. Method Extensions

The method presented here only depends on the interpre-
tation of activity level strategic knowledge. Thus although
the method is capable of generating omission, repetition, or
commission that can result from slips, it is not capable of
replicating ordering errors (a type of commission) for activ-
ities contained in an ord decomposition. Future work should
investigate how to accomplish this.

EOFM formal semantics do not allow for task models to be
abandoned or resumed. This is problematic because erroneous
transitions can lead to task deadlock (a case where the task
cannot continue executing) which is unrealistic. Real human
operators may attempt to abandon, resume, or restart tasks
the system will not let them perform. Future work should
investigate how to incorporate this behavior into EOFM.

1793

C. Comparison with Other Methods

Other researchers [27]–[30] have used cognitive modeling
to produce erroneous human behaviors in formal models con-
taining HAI. These approaches can evaluate erroneous behav-
iors related to the repetition of actions, the omission of actions,
the commission of correct actions in the wrong context, the
replacement of one action with another, the performance of
one or more actions out of order, and the performance of
unrelated actions; all of which can occur for a variety cognitive
reasons. Future work should investigate what the tradeoffs are
between this cognitive modeling approach and the task model
approaches discussed here and in [23].

ACKNOWLEDGMENT

The majority of the work documented in this manuscript
was performed while the first author was pursuing his Ph.D.
in systems engineering from the University of Virginia. The
project described was supported in part by Grant Number
T15LM009462 from the National Library of Medicine (NLM)
and NASA Cooperative Agreement NCC1002043. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the official views of the NIA, NASA, the
NLM, or the National Institutes of Health.

REFERENCES

[1] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,”
Reviews of human factors and ergonomics, vol. 1, no. 1, pp. 89–129,
2005.

[2] E. Hollnagel, “The phenotype of erroneous actions,” International Jour-
nal of Man-Machine Studies, vol. 39, no. 1, pp. 1–32, 1993.

[3] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8, 10–22, 24, 1990.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam-
bridge: MIT Press, 1999.

[5] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, J. Leeuwen, A. R. Meyer, M. N., M. Paterson, and
D. Perrin, Eds. Cambridge: MIT Press, 1990, ch. 16, pp. 995–1072.

[6] P. M. Jones, “Human error and its amelioration,” in Handbook of Systems
Engineering and Management. Malden: Wiley, 1997, pp. 687–702.

[7] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[8] B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London:

Taylor and Francis, 1992.
[9] F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A dia-

grammatic notation for specifying task models,” in Proceedings of the
IFIP TC13 Interantional Conference on Human-Computer Interaction.
London: Chapman and Hall, Ltd., 1997, pp. 362–369.

[10] C. M. Mitchell and R. A. Miller, “A discrete control model of operator
function: A methodology for information dislay design,” IEEE Transac-
tions on Systems Man Cybernetics Part A: Systems and Humans, vol. 16,
no. 3, pp. 343–357, 1986.

[11] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach
to model checking human-automation interaction using task-analytic
models,” IEEE Transactions on Systems, Man, and Cybernetics, Part
A. doi: 10.1109/TSMCA.2011.2109709, 2011.

[12] R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, University of York, York, 2001.

[13] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal methods
to predict human error and system failures,” in Proceedings of the 2nd
International Conference on Applied Human Factors and Ergonomics.
Las Vegas: Applied Human Factors and Ergonomics International, 2008,
pp. CD–ROM.

[14] F. Paternò and C. Santoro, “Preventing user errors by systematic analysis
of deviations from the system task model,” International Journal of
Human-Computer Studies, vol. 56, no. 2, pp. 225–245, 2002.

[15] R. Bastide and S. Basnyat, “Error patterns: Systematic investigation of
deviations in task models,” in 5th International Workshop on Task Models

and Diagrams for Users Interface Design. Berlin: Springer, 2007, pp.
109–121.

[16] S. Basnyat and P. Palanque, “A task pattern approach to incorporate user
deviation in task models,” in Proceedings of the first ADVISES Young
Researchers Workshop. Roskilde: Risφ National Laboratory, 2005, pp.
10–19.

[17] P. Palanque and S. Basnyat, “Task patterns for taking into account
in an efficient and systematic way both standard and erroneous user
behaviours,” in IFIP 13.5 Working Conference on Human Error, Safety
and Systems Development. Norwell: Kluwer Academic Publisher, 2004,
pp. 109–130.

[18] Y. Aı̈t-Ameur, M. Baron, and P. Girard, “Formal validation of HCI
user tasks,” in Proceedings of the International Conference on Software
Engineering Research and Practice. Las Vegas: CSREA Press, 2003,
pp. 732–738.

[19] M. L. Bolton and E. J. Bass, “Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs,”
Innovations in Systems and Software Engineering: A NASA Journal,
vol. 6, no. 3, pp. 219–231, 2010.

[20] ——, “A method for the formal verification of human interactive
systems,” in Proceedings of the 53rd Annual Meeting of the Human
Factors and Ergonomics Society. Santa Monica: Human Factors and
Ergonomics Society, 2009, pp. 764–768.

[21] F. Paternò, C. Santoro, and S. Tahmassebi, “Formal model for co-
operative tasks: Concepts and an application for en-route air traffic
control,” in Proceedings of the 5th International Conference on Design,
Specification, and Verification of Interactive Systems. Vienna: Springer,
1998, pp. 71–86.

[22] P. A. Palanque, R. Bastide, and V. Senges, “Validating interactive system
design through the verification of formal task and system models,” in
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering
for Human-Computer Interaction. London: Chapman and Hall, Ltd.,
1996, pp. 189–212.

[23] M. L. Bolton and E. J. Bass, “Using task analytic models and phenotypes
of erroneous human behavior to discover system failures using model
checking,” in Proceedings of the 54th Annual Meeting of the Human
Factors and Ergonomics Society. Santa Monica: Human Factors and
Ergonomics Society, 2010, pp. 992–996.

[24] D. A. Thurman, A. R. Chappell, and C. M. Mitchell, “An enhanced
architecture for OFMspert: A domain-independent system for intent
inferencing,” in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics. Piscataway: IEEE, 1998.

[25] L. De Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Computer Science Laboratory, SRI International, Menlo Park, Tech. Rep.
CSL-01-01, 2003.

[26] M. L. Bolton and E. J. Bass, “Using task analytic models to visualize
model checker counterexamples,” in Proceedings of the International
Conference on Systems Man and Cybernetics. Piscataway: IEEE, 2010,
pp. 2069–2074.

[27] P. Curzon and A. Blandford, “From a formal user model to design rules,”
in Proceedings of the 9th International Workshop on Interactive Systems.
Design, Specification, and Verification. London: Springer, 2002, pp. 1–
15.

[28] ——, “Formally justifying user-centered design rules: A case study
on post-completion errors,” in Proceedings of the 4th International
Conference on Integrated Formal Methods. Berlin: Springer, 2004,
pp. 461–480.

[29] R. Rukšėnas, P. Curzon, J. Back, and A. Blandford, “Formal modelling of
cognitive interpretation,” in Proceedings of the 13th International Work-
shop on Design, Specification, and Verification of Interactive Systems.
London: Springer, 2007, pp. 123–136.

[30] R. Rukšėnas, J. Back, P. Curzon, and A. Blandford, “Formal modelling
of salience and cognitive load,” in Proceedings of the 2nd International
Workshop on Formal Methods for Interactive Systems. Amsterdam:
Elsevier Science Publishers, 2008, pp. 57–75.

1794

