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Abstract. A policy is a set of guidelines meant to accomplish some intent. In
information security, a policy will take the form of an access control policy that
describes the conditions under which entities can perform actions on data objects.
Further, such policies are prolific in modern society, where information must flow
between different enterprises, states, and countries, all of which will likely have
different policies. Unfortunately, policies have proven to be extremely difficult
to evaluate. Even with formal policies, basic questions about policy complete-
ness and consistency can be undecidable. These problems are confounded when
multiple policies must be considered in aggregation. Even worse, many policies
are merely “formal-looking” or are completely informal. Thus, they cannot be
reasoned about in a formal way and it may not even be possible to reliably de-
termine whether a given course of action is allowed. Even with all of these prob-
lems, policies face issues related to their validity. That is, to be valid, a policy
should reflect the intent of the policy makers and it should be clear what the
consequences are if a policy is violated. It is the contention of the authors that
when evaluating policies, one needs to be able to understand and reason about
the policy maker’s intentions and the consequences associated with them. This
paper focuses on the intent portion of this perspective. Unfortunately, because
policy makers are humans, policy maker intentions are not readily captured by
existing policy languages and notations. To rectify this, we take inspiration from
task analytic methods, a set of tools and techniques human factors engineers and
cognitive scientists use to represent and reason about the intentions behind human
behavior. Using task analytic models as a template, we describe how policies can
be represented in task-like models as hierarchies of goals and rules, with logics
specifying when goals are contextually relevant and what outcomes are expected
when goals are achieved. We then discuss how this framing could be used to
reason about policy maker intent when evaluating policies. We further outline
how this approach could be extended to facilitate reasoning about consequences.
Support for legacy systems is also explored.
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1 Introduction

The term “security policy,” even when only considered in the information security do-
main, has numerous definitions. This paper is concerned with security policies that
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specify under what conditions entities can perform certain actions on data objects. Such
policies are broadly referred to as access control policies. One can even view other poli-
cies, such as Health Insurance Portability and Accountability Act of 1996 (HIPAA), the
Financial Services Modernization Act of 1999 (Gramm-Leach-Bliley Act, or just GLB),
and the European Data Protection Directive 95/46/EC (EU Directive 95/46/EC 1995)
as access control policies, although they are presented in natural language and are thus
much harder to reason about.

All policies, whether formal or not, aim to capturing some “intent.” For example, a
network policy that allows for nothing but the communication of TCP packets on port 22
only permits ssh communication. Thus, the intent of allowing only ssh communication
can be translated to a more formal requirement of “block all but TCP communication
on port 22” which in turn can be expressed as a firewall policy or in some logics.

Policies have been the focus of a significant amount research for over four decades
(e.g, [BL75]). It is well known that many decision problems based on access control
policies are undecidable [HRU76]. This is not surprising since access control mech-
anisms are often expressed in languages that at best can be translated into first order
logic, and at worst (and more commonly) into human “legalese” that has no semantics.
As stated above, a policy determines the conditions under which entities are allowed
to perform actions on data. Thus, we can simplify the discussion and assume that the
goal of a policy is to provide a boolean response to questions regarding whether some
actions are allowed in given circumstances.

The works above show that even the simplest questions, such as completeness – does
a policy establish the access for each instance - and consistency - whether a policy
can establish both access, and the lack of it, for the same instance –, are usually un-
decidable. Moreover, when access cannot be established for a given instance, or when
contradictory access can be established, there are two main problems that may need to
be resolved: the intent of the policy, and the consequences associated with taking ac-
tions not prescribed by the policy. Even when policies are complete and consistent (and
computationally tractable), intent and consequences may play a crucial role. The former
is, in a sense, harder to determine – a policy that is internally consistent and complete
may still not be consistent with the intent behind it (we shall show some simple exam-
ples of this using Section 2). Yet, at times, as we argue, some reasoning about intent
may allow us to detect such anomalies. Consequences naturally come up in the case
of contradictory (inconsistent) policies, where the determination of whether or not one
can access the forbidden (or vice versa) may depend on the consequence of the access.
This often occurs when policies are merged, and one policy grants access only under
certain terms, which contradict those under which access is granted in the other policy.
The issue of intent also arises in the case of incomplete policies. For example, separate
access may be granted to all the individual entities that shares the same attributes except
for one. It may not be clear why access was not given to this individual: there could be
a valid reason, or there may be an error of omission or commission. In such a situation,
the benefits offered by giving the entity access may outweigh the perils of doing so.

With digital data replacing almost all of the analog data, data sharing, transfer,
and dissemination have become a part of our everyday life. As is often the case with
emerging technologies, decades pass before awareness of the perils of the technology
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develops. In the case of data, more and more “privacy policies” have emerged to control
data sharing. These can all be viewed as access control policies. Such policies do not
only attempt to dictate when and how data can be shared (here, we are using the term
“share” loosely) between parties within an organization, but also between organization
and even nations. Policies such as HIPAA, GLB, and EU Directive 95/46/EC are not
expressed in any formal framework and leave much room for interpretation. But even
if they were amenable to formal treatment, basic questions of completeness and consis-
tency are unlikely to be expressible in a decidable logic. For example, these acts contain
clauses such as “unless this violates another clause in this act” which, to be expressed
formally, would require a logic beyond first order.

These types of statements often lead to situations where it is virtually impossible to
determine what the right course of action is since policies that are incomplete or in-
consistent do not uniquely determine such. In fact, an inconsistent policy may allow
for two contradictory actions. To determine the “right” course of action, it is necessary
to reason about the intent of the policy. In fact, as is well known, even policies that are
complete and consistent may not be consistent with the intent behind them, having been
constructed by humans through a patchwork of numerous revisions over a long period
of time where the implications between policy elements may not be completely under-
stood. Moreover, when a policy does not uniquely determine a course of action, and
one must be taken, it is necessary to consider the consequences of the possible actions.
These consequences may not always be objectively ordered (e.g., “pay an insurance
premium and maintain your reputation as a reliable helpful physician” vs “refuse to
help a colleague” vs “illegally keep data and maintain your reputation, unless you are
caught”) and, while automation can assist in listing options, it is ultimately a human
that has to decide among them.

This paper focuses on intent as a methodology to analyze, reason about, and develop
policies.

We start our discussion by using a relatively simple and well studied access control
policies – firewalls. Such policies are always complete and consistent, moreover, they
are Effectively Propositional (EPR, also known as the Bernays-Schönfinkel class) and
enjoy some other mathematical properties that make them easier to reason about than
most others. Yet, as has been pointed out repeatedly in the literature, they may have
some issues pertaining to intent (see, e.g., [ASH03, ALRP12, YMS+06]).

We then focus on the issue of intent and its application in policies. A policy is a rep-
resentation of a human policy maker’s intent, thus, we examine the way that cognitive
scientist and human factors engineers reason about human intentions. This examination
reveals that the constructs in task analytic models that allow the intentions of human
behavior to be reasoned about can also be used to reason about human policy inten-
tions. Using this as inspiration, we adapt task analytic modeling concepts into a form
that allows them to be used to express policy in terms of the policy maker’s intent. We
then explore how this new formulation can be used to reason about policy intentions.
In taking this route, we encounter a common problem from model-based engineering.
Specifically, the language or tool used to represent a concept (such as intent) will nec-
essarily constrain how that concept can be evaluated and reasoned about. This is often
the case with firewalls where intent can be circumvented by redirection of ports, and
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only deep packet inspection (which, as we know, may violate net neutrality) can offer
guarantees one expects to obtain from firewalls. We discuss how our proposed, more
expressive, modeling concept could be used synergistically with these less expressive,
legacy policy systems.

We chose to ignore numerous technical issues that are beyond the scope of this paper
and of current knowledge. Such issues include how to implement (perfect) sanitization,
encryption, and data destruction. Rather than arguing about their feasibility, we con-
sider such (perhaps unattainable) requirements as simple obvious tasks and focus on
the policy statement rather than on the actions it calls for.

2 Firewall Policies

In this section, we discuss the ideas of policies and intent as they apply to firewalls. We
choose firewalls because of their simplicity. They are well understood policies that are
always complete and consistent, have a clear semantics, and questions like complete-
ness and consistency are decidable.

2.1 Firewall Policies

A firewall is a program that controls the flow of information into and out of a computer
or network. Traditionally, most firewalls act as a barrier between a local network or a
personal user and the Internet. When a file (referred to as a “packet”) from the Internet
is sent to the protected computer, the firewall determines if that file should be allowed or
blocked. Due to the widespread amount of malicious activity on the Internet, it is essen-
tial that a user’s firewall be configured properly: allowing too many packets in subjects
the user to potential harm, while blocking too many packets would prevent the user from
doing anything useful. As a result, much work has been done to analyze firewall policy
to ensure that a given policy behaves as desired (see, e.g., [ASH03, ASH04, ALRP12]).

Firewall policies are configured as a sequence of rules that describe whether to allow
or block a packet. They are generally of the form

P : 〈p1, a1〉; 〈p2, a2〉; . . . ; 〈pn, an〉
where for every i, 1 ≤ i ≤ n:

1. pi is a condition of the type of packet: which protocol, source IP and port, destina-
tion IP and port, and pn is always T (true);

2. ai ∈ {block, allow}.

This means that such a policy applies conditions in order, and the first one that applies
determines whether the packet is allowed or blocked. More formally, let x |= p denote
that packet x satisfies condition p. Then, the action the policy applies to a packet x is
ai, where i is the minimal such that

x |= pi and for all j < i, x �|= pj

Since pn = T, it is always the case that x |= pn. Consequently, the policy guarantees
that every packet is either allowed or denied.
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Given a packet x and a policy P , we say that x is allowed by P if the action taken on
x per P’s rules is accept, and that x is blocked by P otherwise. Let A(P) (reps. B(P))
denote the set of packets that are allowed (reps. blocked) by P . For every set of packets
Γ there exists a policy P such that Γ = A(P) (this is because there are finitely many
packet types, and one can always enumerate the set of packets that are allowed, and
block the others). We say that two policies P and Q are equivalent, denoted by P ≡ Q,
if A(P) = A(Q).

Consider now two policies, P and Q. The cascading, or chaining, of P and Q, is the
policy resulting by applying Q to the packets that are allowed by P . Denote the packets
allowed by this cascading as A(P)�A(Q).

Following the observation above, there is a policy that is equivalent to A(P)�A(Q).
We can construct such a policy, but omit the description for brevity. See [Gut00] for
examples. The following observation establishes that cascading is commutative, and
that the set of packets allowed by the cascading of any two policies is the intersection
of the sets allowed by each.

Observation 1. For any policies P and Q,

A(P)�A(Q) = A(Q)�A(P) = A(P) ∩ A(Q)

Proof. Let x be a packet. Then from the definition of �, x ∈ A(P) � A(Q) iff it is
allowed by P and then by Q, thus, it is in both A(Q) and A(P). 	

This observation is not, in general, true. Consider a policy that says “allow x” and one
that says “block x” without the precedence assumptions. Then cascading the policies
one way would allow for x, cascading in another way would block x, and the con-
junction will be trivially F, making it flawed. Since, as we argue soon, cascading and
intersecting policies are of great importance, it’s just nice to observe that focusing on
firewall policies restricts the problem in a way that allows us to ignore much of the
mechanics involving operations on policies.

Cascading and chaining policies are of particular importance in the case of firewalls,
where an enterprise packets may have to pass through different firewalls to get into dif-
ferent part of the enterprise network. Of course, if a network allows several routings
for packets, the results may be conflicting – i.e., one source-to-destination routing may
result in a different allow/block decision than a different routing of the same packet.
While checking whether such conflicts can arise is decidable, in practice, the computa-
tion may be impractical.

The intersection of policies, however, is crucial when having to apply several policies
to the same object. For example, when data “crosses” borders it may need to be allowed
by all policies of the countries involved. We shall return to this point later.

For now, we focus on firewall policies because of their relative simplicity.

2.2 Policy vs. Intent

Obviously, nobody wants a policy to be inconsistent or incomplete. Such eventualities
indicate that the policy does not capture the intent behind it. However, there are many
other cases where a policy does not capture its intent.
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When examining firewall policies that we know can be neither inconsistent nor in-
complete, several studies have revealed problems that indicate that a policy may not be
the way it was intended [ASH04, Woo04, Woo10]. Real-life firewall policies contain
tens of thousands of clauses and are constantly updated to handle new threats/problems.
This updating process is most often manual and prone to error. In addition, there are few
to no mechanisms that will detect such problems [YMS+06].

From a logical point of view, we can view all those errors as weakening the condition
of allowing/blocking a policy and deriving a contradiction. Most commonly, what is
weakened is the ordering. Here we outline some logical formulation of the potential
mismatches between policies and intent as previously identified. In all the cases we
consider a single policy P : 〈p1, a1〉; . . . ; 〈pn, an〉. There are four types of anomalies
that have been studied [ALRP12], which are summarized in Fig. 1. Each refers to two
clauses, i and j, where we assume 1 ≤ i < j ≤ n.

Type actions condition

Shadowing ai �= aj pj → pi
Generalization ai �= aj pi → pj
Redundancy ai = aj pj → pi
Correlation ai �= aj For some packet x, x |= pi ∧ pj

Fig. 1. Anomalies in Firewall Policies

Both shadowing and redundancy can make clause j vacuous – P is equivalent to one
where aj is replaced by the opposite action!. Thus, removal of the jth clause would
result in a policy whose allowed packets are exactly those of A(P). It is, however, often
the case that at least one of the clauses was inserted in the wrong position, and that the
intended policy is not what is expressed by P .

Fig. 2, borrowed from [YMS+06], describes examples of shadowing and redundancy
anomalies. Each firewall policy is listed in the form 〈protocol srcIP srcPort dstIP dst-
Port, action〉, where protocol is either TCP or UDP, srcIP and srcPort are the source IP
address and source port number, dstIP and dstPort are the destination IP address and
destination port number, and action is either block or allow. Note that the source port
and destination port are optional and not included in the examples discussed below.

In Script 1 of Fig. 2, rule 4 is shadowed by rule 2 because all of the packets that
would be blocked by rule 4 have already been allowed by rule 2. Collective shadowing
can also occur, such as rule 5 being shadowed by the combination of rules 1 and 3.
Rule 5 allows TCP 10.1.1.0/24 any, but together, rules 1 and 3 block all of the packets
that rule 5 would allow. In [YMS+06], shadowed rules are assumed to be anomalies
because the inclusion of a specific allow (or block) rule is interpreted as an implication
that the administrator intended a particular set of packets to be allowed (or blocked).
In this example, rule 4 is assumed to capture the intent of the administrator due to
its greater specificity compared to rule 2, and so the shadowing anomaly could be re-
solved by either removing rule 2 or by switching the precedence order of rules 4 and 2
in the list.
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1. 〈TCP 10.1.1.0/25 any, block〉
2. 〈UDP any 192.168.1.0/24, allow〉
3. 〈TCP 10.1.1.128/25 any, block〉
4. 〈UDP 172.16.1.0/24 192.168.1.0/24, block〉
5. 〈TCP 10.1.1.0/24 any, allow〉
6. 〈UDP 10.1.1.0/24 192.168.0.0/16, block〉
7. 〈UDP 172.16.1.0/24 any, allow〉

Sample Script 1

1. 〈TCP 192.168.1.1/32 172.16.1.1/32, allow〉
2. 〈TCP 10.0.0.0/8 any, allow〉
3. 〈TCP 10.2.1.0/24 any, allow〉
4. 〈TCP any any, block〉
5. 〈UDP 10.1.1.0/26 any, block〉
6. 〈UDP 10.1.1.64/26 any, block〉
7. 〈UDP 10.1.1.128/26 any, block〉
8. 〈UDP 10.1.1.192/26 any, block〉
9. 〈UDP any, block〉

Sample Script 2

Fig. 2. Anomalies in Firewall Policies

Redundancy can occur between a pair of rules or among a group of rules. In Script
2 of Fig. 2, rules 2 and 3 are redundant because all of the TCP packets allowed by rule
3 have already been allowed by a preceding rule, rule 2. So rule 3 could be removed
without affecting the behavior of the firewall. Redundancy also occurs between the
group of rules (5, 6, 7, 8) and rule 9. If rules 5, 6, 7 and 8 are removed from the firewall
script, then the UDP packets they block would still be blocked by rule 9 at the end of
the list. The given firewall script could be simplified by removing rules 5 through 8, and
the firewall would not change its action on any packets.

Generalization implies that pj can be replaced by pj ∧ ¬pi without impacting the
semantics of the policy. It may also indicate that there is an error, where clause j should
appear before clause i. In Script 1 of Fig. 2, rule 7 is a generalization of rule 4: the UDP
packets blocked by rule 4 are a subset of the packets that would have been allowed by
rule 7. To eliminate this generalization, rule 7 could be placed before rule 4, or rule 4
could be removed from the policy entirely.

Similarly, correlation implies that the only packets that “reach” clause j are those
satisfying pi ∧ ¬pi and thus pj can be replaced by the above conjunction with no im-
pact on the policy. However, since we assume that pn = T, unless a policy is trivial,
correlation may be a “catchall” and a simple way to specify P . Yet, in the case of j �= n,
correlation may indicate a mistake and that P does not specify the intended policy.

In each of these cases, a SMT solver can detect the existence of an anomaly and
present a counterexample (packet) that demonstrates the anomaly, thus guiding an ad-
ministrator to fix P in case of need.

Suppose that P has no unintended anomalies. Cascading it with another policy, say
Q, may have anomalies. Such anomalies can still be detected by SMT solvers, yet their
resolution may be much harder. Assume an enterprise network where packets may be
routed through different paths and different firewalls. Not only does one have to check
for anomalies on a prohibitively large number of paths (this, in fact, is rarely the case
in practice [YMS+06]), but he or she also has to check the effects of “correcting” any
of the firewalls in one path with the effects these changes will have on the other paths.
Under the (unfortunately realistic) assumption that the number of clauses in each policy
is in the tens of thousands, doing so for a real-life network requires much research and
is beyond the scope of this paper.
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In policies that are less precise than those of firewalls (HIPAA, for example) it is vir-
tually impossible to even define anomalies. One may, however, be able to automatically
detect cases of incompleteness or inconsistency. Perhaps it may be possible to guide a
policy maker to avoid these things (note that if policies are first-order or beyond, no
checker exists for detecting incompleteness and inconsistency). Yet, when faced with
the need to intersect policies so as to be complete, contradictions are possible. Such
contradictions may indicate human mistakes or they may suggest that a more precise
description of intent is needed. In the following sections we describe a novel way for
potential including intent in these considerations.

3 Policy and Intent

Even if all of the anomalies in a policy could be detected, there may still be discrep-
ancies between the policy and the intent of the humans that created it. Ideally, a policy
should perfectly reflect the intentions of the policy maker. Unfortunately, such a trans-
lation is not straightforward because such intentions exist in the mind of the policy
maker. As a result, policy constructs may not be expressive enough to capture the pol-
icy maker’s intentions, and this can lead to problems.

Consider a situation where a policy is designed such that a particular rule encom-
passes all of another potential rule. In such a situation, it will not be clear from the
policy itself which rule the policy was intended to enforce. For example, with a fire-
wall, a policy maker may add a rule to block all traffic on ports 6891–6900 to prevent
file sharing with BitTorrent. However, these ports are also associated with file transfers
in Windows Live Messenger. In such a situation, anybody reviewing the policy may
not be able to infer which type of traffic the policy was intending to block because the
policy notation is not expressive enough to capture that information.

Additionally, humans are not skilled at reasoning about complex systems such as
policies and, thus, their intentions for how the system should work may themselves be
inconsistent or incomplete [Nor83]. However, if the policy is not expressive enough to
reflect the policy maker’s intentions, these anomalies may not be detectable.

To illustrate this, let us once again consider the firewall example. When implement-
ing or changing a policy, a policy maker may encounter a situation where he or she
wants to implement multiple different changes, but one change contradicts all or part of
others. For the firewall, this could occur if the policy maker needs to make two changes:
one blocking all BitTorrent traffic and one allowing Windows Live Messenger. Whether
or not the inconsistency in the policy maker’s intent will manifest in the policy will ul-
timately depend on how the policy is implemented. If the rule for blocking BitTorrent’s
ports comes before the rule allowing Windows Live Messenger, the policy should be
identifiable as inconsistent. However, if the rule allowing Windows Live Messenger
comes before the rule blocking BitTorrent, then the policy will not be. In this last case,
because BitTorrent and Windows Live Messenger can use similar ports, the policy can
potentially allow BitTorrent traffic to pass through, in violation of the policy maker’s
intentions.

In many respects, these problems are inherent to the expressive power of the policy
notation. Firewall policies can only specify policy rules based on IP addresses, ports,



112 M.L. Bolton, C.M. Wallace, and L.D. Zuck

and protocols, while it is often the intent to prevent or allow traffic based on applica-
tions or other contextual criteria. This is beyond the ability of firewalls because they
don’t allow these or other elements of a policy maker’s intent to be considered. This
is a common problem in design, analysis, and specification of systems, where it is im-
perative that the language or notation being used for representing system concepts be
capable of representing the qualities of interest [Lev00].

Thus, to avoid these pitfalls, analysts and policy makers need a means of expressing
and reasoning about policies that more closely aligns with the way humans form inten-
tions. The cognitive science theory of goal directed behavior and planning asserts that
actions are understood when they can be identified as being part of a task or plan, and,
thus, a task or plan can be used with other situational information to infer what goals
the human intends to achieve [EHRLR80, RJM88]. To reason about and perform anal-
yses on goal directed human behavior and intentions, the human factors engineering
community has developed task analytic methods.

When human factors engineers analyze complex systems, they use task analytic
methods to understand how humans physically or cognitively perform tasks to achieve
goals with the system [SCS00, KA92]. Task analysis is largely a manual process. An
analyst will examine system documentation, engage in system training procedures, in-
terview experts and users, and observe people interacting with the system. The output
of this process will be what is called a task analytic model or task model. These can
take a number of different forms. However, the typical structure represents human be-
havior as an input-output model. There are input variables representing information
external to the human, human actions representing output, and a task structure and lo-
cal variables that represent internal state. The task structure is typically represented as
a hierarchy, where goal directed activities decompose into other goal directed activities
and (at the lowest level) atomic actions. Task analytic modeling languages like Concur-
TaskTrees [PMM97], Operator Function Model (OFM) [MM86], Enhanced Operator
Function Model (EOFM) [BSB11, BB10], User Action Notation [HSH90], or AM-
BOSS [GMP+08] can be represented using discrete graph structures. In these models,
strategic knowledge (usually represented as Boolean expressions using the model vari-
ables) that describes when the activity can execute, when it can repeat, and what the
human expects to be true when it finishes. Finally, modifiers between activities or ac-
tions control how they execute in relation to each other.

Task models are relevant to this discussion for two reasons: they can be reasoned
about formally and they can be used for intent inferencing.

Because of their discrete nature, tasks models can be represented formally and in-
cluded in formal analyses. However, the majority of these analyses have focused on
evaluating system safety properties in light of the modeled human behavior or on gener-
ating task-related usability properties for use in the formal verification of human-system
interfaces (see [BBS12] for a review).

Intent inferencing is a process where an observer (who can be another human being
or some automated process) attempts to develop a reasonable explanation for observed
human behavior based on the current state of the system, a history of observed human
actions, and knowledge about the plans the human operator uses to achieve goals (such
as a normative task behavior model) [RJM88]. For example, the task analytic-based
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OFM (Operator Function Model) [MM86] has been paired with a blackboard software
architecture [HR85] to construct an automated intent inferencing system [RJM88]. In
this implementation, the blackboard keeps track of the system’s state and the actions
a human has performed to determine what goal directed activities (contextually within
the larger structure of an OFM) the human may be attempting to achieve. Because an
OFM’s activities can have strategic knowledge, this means that the intent inferencing
system will have a boolean expression representing the state the human expects the
system to be in upon completing the activity’s goal.

In the same way that a task model can be used to describe how a human intends to
accomplish goals with a system, a similar structure should be able to express how a
policy maker intends to accomplish policy goals. In the following section, we describe
what such a formalism might look like and outline how it could be used to evaluate
policies.

4 A Task Analysis-Inspired Approach to Representing Policy

Task models represent the behavior (plan) humans intend to use to accomplish goals
within a system as a hierarchy of goal directed activities and actions. Policies are similar
in that they are meant to represent a policy maker’s intent for how to accomplish specific
outcomes in a regulatory context.

The concepts of activities and actions are not particularly relevant to policy since pol-
icy makers are not performing observable behaviors. However, there are policy analogs
for both of these concepts. In task models, actions represent atomic behaviors a human
can perform. For a policy, the closest equivalent would be an atomic implementation
detail. Hence forth we will refer to this as a rule. In a task model, the main purpose
of an activity is to accomplish a goal via human behavior. In a policy, we can simply
assume the policy maker is attempting to achieve a policy goal or, simply, a goal.

A task model activity can have strategic knowledge that specifies when an activity
should be performed (often called a precondition), what must be true when it terminates
(sometimes referred to as a completion condition or postconditions), and other condi-
tions specific to the fact that behavior is being performed. A policy goal would require
a condition similar to a precondition to assert when it was relevant. We refer to this
condition as context. A postcondition would also be relevant to a policy goal to allow
it to assert what conditions will be required for the policy goal to be achieved. For the
remainder of this paper we will refer to such a condition as outcome.

Fig. 3 summarizes the “translation table” between task models and policies.

Tasks Policies
action rule
activity goal
precondition context
postcondition outcome

Fig. 3. Translation Table between Task Terminology and Policy Terminology
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Conditions in task models are usually represented as Boolean expressions. However,
for policy, these will likely not have the expressive power necessary for describing
context and outcome conditions. What type of logic would be most appropriate for
these is currently an open question and the source of much debate and research (see, for
example, [BDMN06, RSMS10]).

Next, to be consistent with the cognitive theory that claims that the intentions of
specific acts are understood in the context of a plan [EHRLR80, RJM88], we need to
specify how goals and rules can be used to define a plan. Again taking inspiration from
task modeling, where behavior is defined by hierarchies of activities and actions, we can
define policy as hierarchies of goals and rules. In such an organization, a policy would
be composed of a collection of high level, and presumably independent, goals. Each
goal would decompose into lower level goals that would represent subgoals (each with
their own context and outcome conditions) necessary for accomplishing their parent’s
goal. These goals could decompose into other goals and, at the bottom of the hierarchy,
rules. In this way, each rule is explicitly associated with a hierarchy of goals describ-
ing what the policy maker intends to accomplish and in what context it is relevant.
Alternatively, each policy goal (intention) has an explicit description of how it will be
achieved.

In task models, every decomposition is modified by an operator that specifies how
different activities and actions should execute in relation to each other: how many
should be performed, whether they need to be performed in a specific order, and if they
should be performed sequentially or can be performed in parallel. For matters of policy,
it is not obvious what types of relationships will need to be enforced between goals and
rules. It is clear from the firewall example that order is important in the enforcement of
policy; however, other relationships may also be important.

The details of this modeling approach are far from complete. However, if successful,
such a representation should allow for policies to be evaluated with respect to intent in
ways not previously possible. Because it still uses rules as the basis for policy enforce-
ment, these rules should still be capable of being reasoned about in completeness and
consistency evaluations. However, contextualizing these rules in a hierarchy of goals
should afford additional analyses that account for the policy maker’s intent. Static anal-
yses could be used to determine if the rules contained in a goal’s decomposition will
always achieve the goal’s outcome condition. If the analysis indicates that this isn’t
true, the implication would be that the rules in the policy do not achieve the desired
intent. Alternatively, static analysis could be used to examine the goals themselves to
understand if there are contradictions between the outcome conditions of supposedly
independent goals. This could be used to expose contradictions in intent that may not
necessarily manifest as contradictions between rules (as per the firewall example given
in the previous section). These are just some of the examples of the types of analyses
such as a policy modeling approach could facilitate. Additional analyses may also be
possible.

Once complete, this representation could prove to be a very useful for describing
and evaluating policies. As in the case of complex systems, following a hierarchical
development process has immediate and obvious benefits to newly developed systems.
Leaving aside the question of tools, such a design process will undoubtedly results in
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policies that can be analyzed, maintained, updated, and and enforced in a far superior
fashion to the current state-of-the-art. However, just like the case of software engineer-
ing, there are issues of applying such a design process to legacy policies. This would
require some “reverse-engineering” to obtain intent from policies, that, as we know, are
extremely complex. This is reminiscent of the exact same situation in complex systems.
In [Lev00], Leveson refers to an attempt to capture the requirements of TCAS II (an air-
craft collision avoidance system), quoting from a report stating “the intent was largely
missing” and that it is extremely difficult to derive post-priori rationale for decision
made in the design.

Yet, in some cases, we can envision that some “legacy” policies can be reverse-
engineered. For example, in the case of firewall policies, one can consult a reverse-
look-up table that allows one to derive some potential intent behind filtering policies.
Going back to the BitTorrent example, it is fairly easy to derive that blocking UDP/TCP
communication on ports 6891–6900 effectively blocks both BitTorrent and Windows
Live Messenger traffic. Thus, it is possible to automatically construct a candidate “in-
tent document” for such policies. Obviously, it is ultimately a human being who must
determine whether the automatically derived intent is consistent with his or her actual
intent.

5 Conclusion and Future Work

In this paper, we introduced the notion of intent as the driving force behind policies and
discussed the advantages direct reasoning on intent can have in the development and
maintenance of policies that will be consistent, complete, enforceable, and maintain-
able. However, we have not proposed specific systems or mechanism through which to
obtain our ultimate goal as this will be the topic of much further research. Rather, we
have attempted to argue that such mechanisms are necessary and should be studied and
developed.

Bringing reasoning about intent into the study of policies is only half of our vision,
and the only one discussed here. The other part is the study of “consequences.” Having
contradictory or incomplete policies is unavoidable. The former is often a result of the
need to intersect policies, as will be necessary when several entities, each with its own
policy, have to derive a joint one. For example, consider a health policy that requires
sanitization, or even destruction, of health records, and a malpractice insurance policy
that requires saving such records. A physician must satisfy both, and will be left in
a quandary because of the apparent contradiction. An “intent calculus” may assist in
detecting such contradictions, yet, there may be no way to overcome them, and the
entity that must make a decision (in our example, the physician) will need to decide
which of the policies she is to violate. Such a decision requires reasoning about expected
utilities. Unlike classical game theory, here utilities will not always easy to define and
or will be impossible to order. Moreover, they will be based on subjective evaluations
of different options. One physician may have different ethical values than another and
may prefer to violate one policy over another. Even incompleteness may raise the same
issues. For example, a health directive that refers to “medical professionals” and does
not list who they are (physician assistants? medical secretaries? lab technician?) gives
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rise to similar issues. Thus, reasoning about consequences may be a crucial part of
decision making when faced with contradictory, or partial, policy decrees.

As mentioned several times in this paper, it is not clear what the best language is
for expressing a policy given the policy’s intent. Once again, as in the case of complex
systems, a wrong choice of language may result in a policy that fails to capture its
intent. This is obvious with the firewall policies, where the conditions expressible do
not suffice to attain intended protection (as in the case of ssh or BitTorrents) – they may
block (or allow) more than intended, and a sophisticated user may easily bypass them.
Yet, using stronger languages (such as deep packet inspection) raises issues of ethics
and norms, which are problems far and beyond those studied in complex systems.

In practice, one will need to have tools to support reasoning about policies and in-
tents, both for the new and the legacy cases. Borrowing from software engineering,
it may be possible to develop tools that will accomplish some of our goals using be-
havioral programming (for a review see [HMW12]), and variants of the Play Engine
[HM03]. With these, one can describe “good” scenarios and, with the assistance of an
automated system, refine the good/bad scenarios to the point of executable specifica-
tions, or, in our case, a policy with a formal intent model.

Such tools can assist in the much needed reverse-engineering of legacy policies. In
Section 4 we outlined such a possible mechanism for firewall policies. Even with such
policies, it may be difficult to obtain a succinct and readable intent specification from
the policy itself, and the task may be much harder for more complex policies that are ex-
pressed in hundreds of pages of natural languages. Here, learning and natural language
processing tools may be of assistance. However, we do not envision a fully automated
system that can accomplish this goal. This is not unlike the case of complex systems
where many of the methodologies used are essentially manual but can be assisted by
automatic tools to accomplish certain subgoals.
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