2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS) | 978-1-6654-5238-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICHMS56717.2022.9980746

Fuzzy Mental Model Finite State Machines:
A Mental Modeling Formalism for Assessing Mode
Confusion and Human-machine “Trust”

Matthew L. Bolton
Engineering Systems and Environment
University of Virginia
Charlottesville, USA
mlb4b@virginia.edu

Abstract—Formal human-machine analyses based around
human mental models have shown great utility for discovering
when and how people may develop mode confusion and be
surprised or disoriented by automated behavior. Such analyses
represent mental models with finite s tate m achine formalisms.
These are limited in that they assume unrealistic precision in how
people think about states and input events. This paper proposing a
new formalism called Fuzzy Mental Model Finite State Machines
(FMMFSMs). FMMFSMs combine state machine modeling with
fuzzy logic to allow for precise reasoning about the imprecision
of human mental model states and inputs. This has the potential
to enable formal mental model analyses to support traditional
mode confusion, but also account for things like drift: where
the humans mental model changes over time due to stagnant or
slowly changing conditions. This paper presents the FMMFSMs
formalism and illustrates is potential for finding m ode confusion,
automation surprise, and trust disruption with an automobile
automation application. Implications of these developments and
future research are discussed.

Index Terms—Formal methods, mental model, mode confusion,
automation surprise, fuzzy logic, state machine, trust

I. INTRODUCTION

A mental model is “a user’s internal representation of the
function of the target system” [1, p. 7]. Critically, when a person
is interacting with a system, they will “run” a mental model to
track the system state and anticipate future behaviors. Mental
models can be abstract, incomplete, unscientific, and imprecise
[1]. Enabling people to maintain accurate mental models is
critical to safe and effective human-machine interaction. A
lack of correspondence between a human’s mental model
and the actual system constitutes mode confusion [2]. Mode
confusion can cause automation surprise, where the system does
something unexpected or does not do something expected [3].
This can disorient an operator (causing errors) and erode human-
automation trust. As such, mental modeling has become instru-
mental in contemporary design practices for decision support,
joint cognitive systems, and human-machine interaction [4]-[7].
Mental models have also been employed in formal verification.
In this, automated proof techniques mathematically find system
and mental model inconsistencies, automation surprise, human
errors, and engineering interventions to address them [8]-[10].

Formal analyses typically represent mental models as non-
deterministic state machines where events (human actions or
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environmental changes) cause state transitions. These models
imply binary/crisp human perception of transition events (they
either happened or did not) and current state (the model is in
a given state, or it is not). Thus, this formalism can support
abstract, incomplete, and unscientific mental models, but not
imprecise ones. As such, traditional state machines provide no
insights into the degree of automation surprise and associated
trust degradation.

II. OBJECTIVE

We propose addressing these shortcomings with Fuzzy
Mental Model Finite State Machines (FMMFSMs). This new
formalism uses state machines as its base but allows for
possibilistic uncertainty using fuzzy logic [11]. Fuzzy sets
and logic were developed to naturally capture the vagueness
inherent to human thinking: things do not necessarily fall
into discrete categories (e.g., true or false) but rather into all
categories with degrees of membership (fuzzy set memberships
with degrees from 0, not at all, to 1, completely).

Note that fuzzy set membership differs from probability.
Probability is associated with providing precise measures of
the likelihood of an event occurring. Conversely, fuzzy set
membership precisely captures how vague something is. This
is why fuzzy set membership is a better candidate for capturing
the imprecision/vagueness of human mental models. This
distinction is important because fuzzy set memberships and
probabilities have similar, but different, mathematical properties.
For example, the fuzzy set memberships around related labeled
concepts (e.g. true or false) need not sum to one.

We hypothesize that, through FMMFSMs, fuzzy logic can
be used with state machines to precisely represent mental
model imprecision. In this paper, we present a definition of the
FMMFSM formalism. We then use a simple driving automation
case study to illustrate its potential utility for predicting human
mode confusion and the degree of automation surprise.

III. Fuzzy MENTAL MODEL FINITE STATE MACHINES
(FMMFSMSs)

FMMFSMs have been conceptualized to capture uncertainty
that could exist in both human event perception and the state
the human thinks the system is in. The fuzziness of both is

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:26:06 UTC from IEEE Xplore. Restrictions apply.



accounted for in state transitions. Thus, at any operational
instance, a FMMFSM should describe how possible the person
thinks it is that the system is in any state. The model
will logically transition to a new distribution of fuzzy state
memberships based on the current distribution and the fuzziness
of perceived events. This formalism should thus allow analysts
to quantify the degree (if any) of the discrepancy between
(fuzzy) mental and (crisp) system model states based on the
distance between memberships of the actual system state (0 for
not in the state or 1 for being in the state) and its corresponding
mental model state (a value inclusively between 0 and 1).

In what follows, let F be the set of possible fuzzy member-
ship values: F = {x:x e RAx € [0,1]}.

A FMMFSM is an 8-tuple: (X,Q,1,M,mg,®,¢,0):

« X is a finite set of input events (human actions, environ-
mental events, etc.) that can cause a change in system
state that are observable by a person.

e Q is a finite set of states the person thinks the system
could be in.

o [ is the set of all possible vectors of fuzzy membership
values of input events from Y. That is, each entry in
a given vector iel represents the degree to which the
person thinks that the associated input event occured:
Viel,(Jil=|Z|)A(Vi€i,i € F). Note that vertical bars
|| represent the cardinality of the contained vector or set.

e M is a set of all possible vectors of fuzzy membership
values for each state from Q. That is, each entry in a
given vector m € M represents the degree to which the
person thinks the machine is in the associated state of Q:
Vine M, (|| =|0|) A (Vm € m,m € F).

e 7y € M is a vector representing initial state fuzzy set
memberships: the degree to which the person thinks the
machine is initially in each state.

e a:X — [ is a function that describes how inputs are
fuzzified by mapping crisp input events from X to a vector
of input fuzzy set memberships from 1.

e ¢:0xX— M is a function that describes the fuzzification
of state transitions (the degreee to which the person thinks
that a given state and input will transition to another given
state) by mapping current states (Q) and input events (X)
to a vector of membership values for next states (M).
Thus, Vs € £ and Vg € Q, ¢(g,s) describes the degree to
which the person thinks the machine will be in each state
of Q in the next state following input event s when the
machine is in state q.

e 0:M XX — M is the “next state” function. This uses
a and ¢ to describe how a given vector of fuzzy state
memberships (the degree to which the person thinks that
the machine is in each state) will change in response to an
input event. If we let ' € M be the resulting “next state”
vector of fuzzy state memberships associated with a given
event s € ¥ happening with a current state memberships
vector m € M and we let V; generically represent the value
associated with a given item i in any given vector V, then:

&(m,s) = m' where Vm/, e m’ :

m, = \

myEim,s; €0(s)

(my As: AN (,2),). (D)

The rationale for the expression in Eq. (1) follows. For
any given state y € Q and input event z € ¥, membership in
a next state x € Q will be present IF the state machine is
in y AND the event z occurs AND the state machine can
transition to x from y on z. Thus, the fuzzy membership value
of x in the next state as contributed by this condition will
be the fuzzy AND of current state membership (m,), input
event membership (s;), and membership of x produced from y
transitioning on z (¢ (y,z),). Because any possible combination
of current states and inputs could transition to x, we take a
fuzzy OR of all possible memberships of current state and
input event combinations transitioning to x.

There are different ways for computing AND (A) and OR
(V) on fuzzy set memberships [12]. This includes the standard

/\x, = Min(x1,x2, ..., X,) )

and

\/xl 3)
However, we are interested in how fuzzy state memberships
could evolve over time (e.g., how the membership degree of a
given mental model state will reduce the longer contradictory
evidence of that state is perceived). This is not possible with
Egs. (2) and (3) because they only select from the set of
considered fuzzy numbers (i.e., the exact values of xp, x2, ...,
Xp). Thus, we used the alternative formulations [12] of

Maxxl,xz, X )

Axi=]]x “4)
i=1 i=1
and "
\/izl”xizl—H(l—x,-), @)
=1

which are more similar to logical operations on probabilities.

IVv.

To illustrate the potential utility of this formalism for finding
mode confusion and automation surprise, we now apply it to
a very simple automobile automation application (inspired by
cases from [13], [14]), a cruise control.

For the sake of simplicity, we assume that this system has
two states: Active, the cruise control is enabled at a given
speed, and Inactive, the cruise control is not initiated and will
not control the speed of the car. We also simplistically assume
that the system can respond to two inputs: the human applying
the Gas and the human not applying it (NoGas). The way the
automobile drives will depend on the unique combinations of
the system state and inputs. When the cruise control is Inactive,
the car will be propelled forward at a speed and acceleration
commensurate with the application of Gas. If there is NoGas,
the car will not be driven at all by the engine and decelerate
in most situations. When the cruise control is Active, the
automobile will maintain its current speed when NoGas is
applied. However, the driver has the option to override the
cruise control by pressing the Gas to achieve speeds beyond
what was set. In this situation, if the driver ceases to apply gas

ILLUSTRATIVE EXAMPLE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 10,2023 at 22:26:06 UTC from IEEE Xplore. Restrictions apply.



(NoGas occurs), the vehicle should (in most conditions) slow
down to the speed set in the cruise control. However, once the
car hits the cruise speed, it should proceed at that speed with
no additional deceleration.

To model this application as a FMMFSM, we first define
sigma based on the human action input events that can occur:

Y. = {Gas,NoGas}. (6)
Second, we can define the system states:
0 = {Active, Inactive}. (7

I and M are thus defined by the possible vectors of membership
values for each element in ¥ and Q respectively:

Gas NoGas )
I= {( iGass INoGas )|iGas S IF/\I.NoGas € IF}
and
Active Inactive
9

M= {( M Active; MiInactive )|mActive € F A miactive € IF}

Our analysis starts assuming the person has been driving
with cruise activated with NoGas. Thus, the driver is relatively
certain that cruise is Active:

Active Inactive
my = ( 1, 0.01 ).

Additionally, we assumed that the driver would be relatively
certain each of the two actions when being applied, where
there may be slight uncertainty about Gas application (e.g., a

(10)

foot is against the pedal, but not applying effective pressure).

Thus, we assigned an o function as shown in Table I. We
also used our intuition to assign fuzzy membership values to
the conditions required for ¢ (Table II). Note that in these
cases, the driver will be most certain that the automobile will
remain in its current state regardless of the action. There is
more uncertainty when gas is being applied because the car

dynamics will not indicate whether the cruise control is active.

Finally, 0 is defined as specified by Eq. (1) using the respective

definitions of fuzzy A and V operations from Egs. (2) and (3).

To illustrate how this model could be used to find mode
confusion, we can simulate how the human’s concept of state
membership changes in response to events and over time. For
this, we assumed that at the beginning of our analysis, the
driver (who had been previously driving with NoGas and cruise
Active; Eq. (10)) applies Gas to respond to conditions in the
environment (such as speeding up to accommodate a merging
car). We assume that the driver then continues applying Gas

TABLE I
o FOR THE CRUISE
CONTROL FMMFSM

TABLE I
¢ FOR THE CRUISE
CoONTROL FMMFSM

Vector Vector
Event  (Gas, NoGas) State Event (Active, Inactive)
Gas (0.99, 0.01 ) Active Gas ( 09,02 )
NoGas (0.00, 1.00 ) Inactive  Gas ( 02,09 )
Active NoGas (0.9, 0.1 )
Inactive NoGas ( 0.0, 1.0 )

E— Input Event (Human Action) —
NoGas Gas NoGas
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Fig. 1. Graph showing how human fuzzy membership values for cruise control
Active and Inactive states (as predicted by the FMMFSM described in Eqgs. (6)
to (9) and Tables I and II) change over model steps through a scenario. (a) The
cruise control starts active with the human having a fairly accurate assessment
of cruise state just as the gas is applied. (b) The human’s understanding of
the possible cruise states becomes more ambiguous the longer the human
applies the gas. (c) Inactive membership exceeds Active membership just as
the human releases the gas. (d) The human feels the car decelerate and Active
membership precipitously drops. This constitutes a potentially dangerous mode
confusion, where the human inaccurately and increasingly thinks that it is
more Possible that cruise is Inactive than Active.

(controlling the car’s speed above the one set for cruise) for
16 model steps. Figure 1 shows how the Active and Inactive
state membership values change/converge over this period, with
Active membership slowly decreasing and Inactive membership
increasing until it overtakes Active at step 16.

While this constitutes a potential mode confusion condition,
where the driver effectively thinks that it is slightly more
possible that the cruise control is inactive than active, the
situation can get worse. From here, we assumed that the driver
removed their foot from the gas (applied NoGas; e.g. to slow
while driving up an exit ramp). As Fig. 1 shows in steps 16-20,
this causes the membership of Active to quickly drop while
membership in Inactive continues to slowly rise. This could
produce a potentially dangerous automation surprise for a driver
who may find their car suddenly applying gas in a situation
where they need to slow down, such as coming into a tight
exit ramp curve or approaching a stop.

V. DISCUSSION

In this work, we have introduced the new FMMFSMs
formalism for modeling human mental models. This combines
concepts from fuzzy logic and state machines. This enables
a precise representation of the vagueness humans will have
about system input events and the state a given automated
system is in. The presented application demonstrates how
this formalism could be useful for reasoning about mode
confusion and automation surprise. In particular, it provides an
unprecedented ability to examine the degree to which human
interpretation of system sate can diverge from reality, and how
this divergence can drift or aggregate over time.

The magnitude of divergence provides a first step towards
quantifying the degree of mode confusion. This could provide
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insights into the level of surprise and disruption such mode
confusion could manifest. It could also potentially allow for a
quantitative understanding of how automation surprise could
damage human-machine trust. However, it is important to mind
that the research presented here is preliminary. As such, there
is much potential for future research.

We fully acknowledge that the application we evaluated is
simplistic and potentially unrealistic. This is because it was
intended to be illustrative rather than representative. However,
there are real examples of the types of automation surprises
exhibited by cruise controls [13]. Thus, our example is not
completely artificial. In any case, future work will investigate
more complete, realistic, and validated applications such as the
complete cruise control systems from Lee et al. [15] or more
“cutting-edge” automobile automation.

One of the biggest challenges of modeling with fuzzy
logic is eliciting the fuzzification processes. This is because
they traditionally require direct collection from humans [16].
Similar constraints impact the identification of state-based
human mental models. Future work should investigate how
to efficiently collect such information from humans and/or
develop algorithms that could learn it from data.

It is worth noting that the fuzzification process presented in
the cruise control application are simplistic. In more standard
fuzzy analyses, a membership function determines how crisp,
measurable quantities from the environment are fuzzified.
Membership function implementation should be compatible
with the formulation of o from Section III. This should be
investigated in more depth in future research.

Fuzzy state membership values of FMMFSMs have potential
for providing model-based predictions about the degree of hu-
man mode confusion, automation surprise, and human-machine
trust. However, this connection will need to be validated.
Future research should empirically investigate how fuzzy state
membership values correspond with these phenomena.

Finally, to be genuinely useful for finding unexpected human-
machine interaction problems, FMMFSMs should be adapted
for use in model-based analyses. Our case study shows that
FMMFSMs are compatible with simulation. More complete
evaluations could be achieved by adapting FMMFSMs for use
in formal analyses like model checking [17]: an automated
approach to formal verification. Model checking has been
used successfully to explore mode confusion and automation
surprise (see [18]) because proves properties about state-
machines. Operations on fuzzy memberships are incompatible
with standard model checkers because they are continuous and
require nonlinear operations (e.g. Eqgs. (4) and (5)). However,
fuzzy memberships and their operations are very similar to
those of probabilities, and there are model checkers that can
handle stochastics [19]. Future research should investigate how
to adapt these tools for use with FMMFSMs.
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