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33.1 Introduction

Cognitive engineering is the application of cognitive science to human
factors and systems engineering. When cognitive models are used for this
purpose, the predictive or explanatory power of the model is used to improve
engineering system performance. Cognitive models can be used at any stage of
the engineering life cycle (Figure 33.1). They can be part of the analysis of an
existing system to identify when human cognition is contributing to problems
and establish requirements for new systems. Cognitive models can be used in
design to produce system elements (human–machine interfaces, system behav-
iors, or training requirements) that are compatible with human cognition.
Cognitive models can be incorporated into an actual system’s implementation
to provide humans with training and/or decision support. Cognitive models can
inform system testing and evaluation by identifying cognitive conditions worthy
of deeper analysis. Furthermore, model-based generation can create tests to
ensure that all cognitively relevant system conditions are observed. Finally,
cognitive models that were part of implementation can be used during a
system’s operation and maintenance.
Thus, while the cognitive models and architectures commonly associated

with cognitive engineering [ACT-R (Anderson, 1993), EPIC (Kieras & Meyer,
1997), Soar (Newell, 1990), and QN-MHP (Liu, Feyen, & Tsimhoni, 2006)]
were created to understand human behavior, their use and development in
engineering has been done with the purpose of realizing better systems. This
means cognitive engineering models are not strictly concerned with understand-
ing the cognitive mechanisms underlying behavior (the emphasis of cognitive
science) unless that understanding has utility for engineering goals.
Fortuitously, the explainability of cognitive models does have value because it
enables systems, analysts, and users to understand why behavior is occurring
and use this to inform response and design.
Gray (2008) identified five key differences between cognitive science and

engineering: (1) Cognitive engineers pick the problems they address (system
performance, safety, workload, usability, financial impact, trust in automation,
etc.) because there is an operational need, not because they are necessarily
scientifically interesting. (2) Because of operational need, cognitive engineers
often work in emerging domains or those where there has been little prior study
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(like autonomous driving or wearable computing); not the well-trodden appli-
cations common to cognitive science. (3) This means that cognitive engineering
modelers must rely on domain experts (i.e., subject matter experts or
practitioners) to supply information when there is a lack of historical data or
cognitive theory. (4) For cognitive engineers, model utility is prioritized over its
ability to provide a depth of insight into the represented phenomenon. Finally,
(5) cognitive engineers are typically responsible for predicting human perform-
ance as part of a complex system. As such, a significant amount of cognitive
engineering is focused on capturing the control of integrated cognitive systems
in their models (Gray, 2007). In this situation, any lower level cognitive con-
structs (like memory or categorization) are included in service of accomplishing
and/or explaining the control.

These distinctions produce an environment where model fidelity varies based
on application goals. This chapter provides readers with a history of cognitive
modeling in cognitive engineering and its diverse contributions. It first reviews
the seminal work of Card, Moran, and Newell (1983), which laid the founda-
tions for many developments. Then, to give readers a sense of the issues facing
contemporary cognitive engineering, the chapter examines the use of cognitive
models in complex systems. The chapter concludes with a summary and a
discussion of potential threats and future advances.

33.2 Initial Approaches to Cognitive Modeling for
Cognitive Engineering

Attempts to apply computational and mathematical modeling tech-
niques in human factors and systems engineering have a history (see Byrne,
2007; Kieras, 2007; Pew, 2007) that is beyond the scope of this chapter. This
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Figure 33.1 The engineering life cycle.
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section focuses on the seminal work of Card, Moran, and Newell on GOMS
(goals, operators, methods, and selection rules). GOMS is a task-analytic
framework for modeling human information-processing, behavior, and per-
formance. GOMS is based on the human’s (a) goals, the (b) operators (low-
level perceptual, motor, or cognitive acts) needed to accomplish the goals,
sequences of operators and sub-goals that constitute (c) methods for accom-
plishing a goal, and (d) selection rules for choosing methods.
Most cognitive science researchers were trained in experimental psychology.

This tradition focuses on discovering truths about the natural world with large,
controlled studies. People with this background often cannot conceive of how
someone could model something as complex as driving or unmanned aerial
vehicle (UAV) operation.
Such developments are possible because most human behavior can be mod-

eled as a hierarchy of tasks and subtasks (Kirwan & Ainsworth, 1992; Simon,
1996, chapter 8). The structure of this hierarchy is generally determined by the
task environment, rather than the human operator. As such, cognitive engineers
can break behavior down to the level required by analysis goals. This task
analysis works well for designing complex industrial operations and procedures
for human tasks (Kirwan & Ainsworth, 1992; Shepherd, 1998, 2001). For those
interested in interactive systems, task analyses can be straightforward because
most human behavior is produced in direct response to changes in the environ-
ment. Although interactive behavior is complex, the complexity lies in (a)
evaluating the current state of the environment; (b) deciding what can be done
to advance user goals; (c) evaluating strategies for accomplishing these goals;
and (d) executing the strategy. The key to this cycle is the unit task.

33.2.1 The Unit Task as a Control Construct for Human
Interactive Behavior

Card, Moran, and Newell’s conceptual breakthrough was that most tasks were
composed from smaller “unit tasks within which behavior is highly integrated
and between which dependencies are minimal. This quasi-independence of unit
tasks means that their effects are approximately additive” (Card et al., 1983,
p. 313). Thus, the “unit task is fundamentally a control construct, not a task
construct” (Card et al., 1983, p. 386). The unit task is not given by the task
environment, but results from the interaction of the task structure with the
control problems faced by the user.
The prototypical unit task example (Card et al., 1983, chapter 11) is the

structure imposed on a typist during transcription. The transcription task
environment consists of dictated speech, a word processor, and a foot pedal
that controls recording playback. As speech is typically faster than skilled
typing, the basic problem faced by typists is how much of the recording to
listen to before pausing. Efficient typists listen while typing. The longer typists
listen, the greater the lag between what is heard and what is typed. At some
point, typists will pause the recording and type until they cannot confidently
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remember more of the recording. With experience, a skilled typist will minimize
the amount of rewind and replay while maximizing the amount typed per unit
task. This “chopping up” of the task environment into unit tasks reflects a
control process that adjusts performance to task characteristics (dictation speed
and speech clarity), the typist’s skill (words per minute), and to the typist’s
cognitive, perceptual, and motor limits.

33.2.2 The Path from Unit Tasks, Through Interactive Routines,
to Embodiment

Table 33.1 shows a typical GOMS unit task using Natural GOMS Language
(NGOMSL). This is one of approximately twenty needed to model Lovett’s and
Anderson’s (1996) building sticks task: a game whose objective is to match the
length of a stick by building a new one from pieces of various sizes. This unit task
would be invoked to subtract length from the built stick when it was larger than
the target. This example (Table 33.1) shows that each line/statement has an
execution overhead (statement time; Stmt Time) of 0.1 seconds (s). There are
three operator types used: a point operator (P) that is assumed to have a time of 1.1
s; a button click (BB; up and down) with duration 0.2 s; and amental operator (M)
with duration 1.2 s. The entire method for accomplishing this unit task lasts 5.8 s.

As the table suggests, NGOMSL (Kieras, 1997) reduces all operators to one
of a small set. The duration of each operator is based on empirical data or
mathematical models (such as Fitts’ Law or Hick’s Law). Much of what goes
into an NGOMSL analysis comes from the second chapter of Card et al. (1983),
which casts many regularities gleaned from experimental psychology into a
form that has utility for engineers.

GOMS was intended as a tool for cognitive engineering. Hence, each line of
the NGOMSL analysis could be more precise and tailored based on factors

Table 33.1 Example unit task for the “building sticks task” using natural GOMS
language (NGOMSL; Kieras, 1997)

Step Description
Stmt
time (s) Op # Ops Op time

Total
time (s)

Method for goal: Subtract stick<position> 0.1 0.1
Step 1 Point to stick<position> 0.1 P 1 1.1 1.2
Step 2 Mouse click stick<position> 0.1 BB 1 0.2 0.3
Step 3 Confirm: Stick is now black 0.1 M 1 1.2 1.3
Step 4 Point to inside of “your stick” 0.1 P 1 1.1 1.2
Step 6 Click mouse 0.1 BB 1 0.2 0.3
Step 7 Confirm: Change in stick size 0.1 M 1 1.2 1.3
Step 8 Return with goal accomplished 0.1 0.1

Overall Time (s): 5.8

Abbreviations: Stmt time ¼ statement time; Op ¼ operator; P ¼ point operator; BB ¼ button
click; M ¼ mental operator.
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such as the exact distance moved. However, the granularity of GOMS analyses
in Table 33.1 is too gross for some purposes. Indeed, to model transcription
typing, John (1996) developed a version of GOMS that went to a lower level.
John (1988) represented the dependencies between cognitive, perceptual, and
motor operations during task performance (see Figure 33.2) in an activity
network formalism (Schweickert, Fisher, & Proctor, 2003) that allowed for
the computation of critical paths. This variant is called CPM-GOMS, where
CPM has a double meaning as both critical path method and cognitive, percep-
tual, and motor operations.
The power of this representation was demonstrated through its ability to

predict performance times for telephone Toll and Assistance Operators (TAOs;
Gray, John, & Atwood, 1993). CPM-GOMS models predict the counterintui-
tive finding that TAOs using a proposed new workstation would perform more
slowly than those who used the older workstations. After a field trial confirmed
this prediction, the models provided a diagnosis, in terms of the procedures
imposed by workstations on the TAO, as to why newer, faster technologies
could perform more slowly than older ones.

cursor
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@target
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Figure 33.2 A CPM-GOMS model of an interactive routine (Gray & Boehm-
Davis, 2000), which could be instantiated as Steps 1 and 4 from Table 33.1. It
shows the cognitive, perceptual, and motor operations required to move a
mouse to a predetermined computer screen location. Total predicted time is
530 milliseconds (ms). The middle row shows cognitive operators with a
default execution time of 50 ms each. Above that are the perceptual operators.
Below it are the motor operators. Operators flow from left-to-right with lines
indicating dependencies. Within an operator type, dependencies are sequential.
However, between operator types, dependencies may be parallel. Numbers
above each operator indicate its execution time in ms. Time accumulates
from left-to-right along the critical path (bold lines connecting
shadowed boxes).
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33.2.3 The Legacy of Card, Moran, and Newell

GOMS and CPM-GOMS made several things obvious. First is the basic insight
offered by the unit task; namely, that functional units of behavior resulted from
an interaction between: the task being performed; detailed elements of the task
environment’s design; and limits of human cognitive, perceptual, and motor
operations. Second, the notation of CPM-GOMS made it very clear that all
human behavior was embodied behavior. Indeed, the mechanistic representa-
tions of CPM-GOMS were very compatible with the views of embodiment
expressed by modelers such as Ballard (Ballard & Sprague, 2007) and Kieras
(Kieras & Meyer, 1997). Third, whereas GOMS and NGOMSL (Kieras, 1997)
emphasized control of cognition, CPM-GOMS provided a representation that
showed that this control was far from linear, but entailed a complex interleaving
of various parallel activities.

Since the nineties, many of the insights of CPM-GOMS have become stand-
ard among modelers and accelerated cognitive engineering progress.
Researchers built GOMS-inspired hierarchical task modeling formalisms with
increased expressive power for capturing nondeterminism in human behavior,
representing different elements of cognition, and supporting different
engineering efforts (see for example ConcurTaskTrees (CTT; Paternò et al.,
1997), Enhanced Operator Function Model (EOFM; Bolton et al., 2011),
HAMSTERS (Fahssi, Martinie, & Palanque, 2015), Work Models that
Compute (Pritchett et al., 2014), and GOMS-HRA (Boring & Rasmussen,
2016)). Kieras and Myers built the EPIC cognitive architecture (Kieras &
Meyer, 1997), by expanding Kieras’ parsimonious production system (Bovair,
Kieras, & Polson, 1990; Kieras & Bovair, 1986) to include separate modules for
motor movement, eye movements, and so on. ACT-R (Anderson, 1993) has
added a module for visual attention (Anderson, Matessa, & Lebiere, 1997),
experimented with EPIC’s modules (Byrne & Anderson, 1998), and completely
restructured itself so that all cognitive activity (not simply that which required
interactive behavior) entailed puts and calls to a modular mind (Anderson et al.,
2004). During the same period, Ballard’s notions of embodiment took literal
form in Walter – a virtual human who could follow a path while avoiding
obstacles, picking up trash, and stopping to check traffic before he crossed the
street (Ballard & Sprague, 2007).

33.3 Computational Cognitive Modeling for Engineering
Complex Systems

Cognitive modeling has shown significant utility in engineering, par-
ticularly for complex systems. A system is complex if it is composed of multiple
interacting components (including human operators) that must work together
to achieve system goals. In such systems, so called “human error,” where a
human diverges from a normative plan of action (Hollnagel, 1993), is regularly
cited as a source of failure or system instability (Reason, 1990; Sheridan &
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Parasuraman, 2005). Human error in medicine contributes to 251,000 deaths a
year (Makary & Daniel, 2016); approximately 50 percent of commercial avi-
ation and 75 percent of general aviation accidents (Kebabjian, 2016; Kenny,
2015); a third of UAV incidents (Manning et al., 2004); roughly 90 percent of
automobile crashes (NHTSA, 2008); and high profile disasters like the catas-
trophe at Three Mile Island (Le Bot, 2004), often due to poorly designed human
interaction (Bainbridge, 1983). This is an extremely topical area because engin-
eered systems continue to become more complex and automated, often with
little regard for the capabilities, cognitive limitations, or well-practiced experi-
ence of human operators (Strauch, 2017).
With this perspective, cognitive engineers attempt to analyze, design, and

evaluate systems from a human-centered perspective: giving humans the infor-
mation and controls they need to fulfill their role in the system safely and
effectively. For engineers in the cognitive modeling space, this means using
cognitive models to understand the demands on human cognitive, perceptual,
and action resources during system operations, discover potentially dangerous
operating conditions, and inform designs that will address or avoid problems
and facilitate human performance. In fact, model-based analyses offered by
cognitive models are particularly advantageous in complex systems for several
reasons. First, many complex domains are safety critical, where it can be
dangerous to evaluate human behavior in actual operational environments.
Cognitive-model-based analyses can provide deep insights into human perform-
ance without the need for running the system in dangerous situations. Second,
system failures are relatively uncommon and may be difficult or impossible to
anticipate. Cognitive-model-based analyses can help engineers reduce the like-
lihood of human source of variability. They can also explore a system’s state-
space to discover previously unforeseen operating conditions. Finally, human
subject experiments and testing are expensive, time consuming, and incomplete.
Cognitive-model-based analyses can be performed without human participants
or identify specific areas where human testing is necessary. This can lead to
faster, more cost effective, and more complete engineering efforts.
The following discuss contemporary developments in cognitive models in

complex systems engineering. It starts with a description of cognitive-architec-
ture-based simulation advances before looking at the more applied applications
of cognitive models in “formal methods” analyses.

33.3.1 Cognitive Architectures

Cognitive architectures offer frameworks around which to model human cog-
nition and behavior computationally. In cognitive engineering, this is typically
implemented based on the way that humans learn, store, and execute “if-then”
production rules. These are typically used in simulation-based analyses where
the model represents simulated humans in a simulated or real operational
environment. The performance of the simulation is used in engineering analyses
and evaluations. The cognitive portion of the model serves to explain human
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behavior and/or a cognitive dimension of the behavior. There is a long history
of cognitive-architecture-based models. Recent developments have focused on
incorporating elements of visual and auditory perception (Kieras, Wakefield,
Thompson, Iyer, & Simpson, 2016). The following sections describe several
complex system areas where cognitive-architecture-based models have been
advancing both cognitive science and cognitive engineering.

33.3.1.1 Unmanned Air Vehicles

An important challenge for cognitive engineering is the design of new systems,
especially those that create new human operator roles. One such system is the
UAV. UAVs are increasingly used by the defense, intelligence, and civilian
organizations in contexts from piloting to package delivery.

Remotely piloting a slow-moving aircraft while searching for ground targets
is difficult for even experienced pilots. A complete model that could take off,
perform missions, interact with teammates, and return safely would entail the
detailed integration of most, if not all, functional subsystems studied by cogni-
tive scientists and raise challenges in the control of integrated cognitive systems.
Such a complete system is beyond the current state-of-the-art. However, partial
systems can be useful in determining limits of human performance and identi-
fying strategies that work. This is the approach proposed by Gluck et al. (2005)
and Ball et al. (2010), who outlined how a “synthetic teammate” for UAV
ground control training could be realized using ACT-R. Since its proposal, this
effort has produced what might be the largest and most complicated cognitive
model ever created. Gluck, Ball, & Krusmark, (2007) advanced this approach
by building partial models to study the challenges of human UAV pilots. These
researchers modeled two alternative strategies, one based on a simple control
strategy and the other based on what is taught to pilots. They showed that the
simple one would not meet UAV performance demands and that actual human
performance data suggested that the best pilots used the strategies from the best
performing model. More recently, Rodgers, Myers, Ball, & Freiman (2011)
have been exploring how to account for situation awareness in the synthetic
teammate by integrating linguistic inputs, the context of discourse, the task
process, and the model’s knowledge in a new situation component. Demir et al.
(2015, 2016) also advanced this approach by accounting for human–human
communication and coordination. In this, language comprehension, language
generation, dialog modelling, situation modelling, and agent-environment
interaction components are ultimately used to communicate (textually) using
common patterns from the work domain.

33.3.1.2 Driving Under Different Levels of Autonomy

Driving inherently occurs as part of a complex system that involves a dynamic
environment, multiple vehicles, and multiple drivers. It is also cognitively
demanding in that it requires the integration and interleaving of basic tasks
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related to control for stable driving, tactical behavior for interacting with the
dynamic environment, and strategic processes for planning (Salvucci, 2006).
Salvucci and colleagues (Salvucci, 2006; Salvucci & Gray, 2004; Salvucci &

Macuga, 2002) did foundational work modeling human cognition (in ACT-R)
while driving. Ultimately, Salvucci (2006) compared the models with human
behavior on several dependent variables related to lane keeping, curve negoti-
ation, and lane changing using simulations. The dependent variables included
performance-based measures such as steering angle, lateral position, and eye
data related to visual attention.
In recent years, the driving domain has been made more complex with

varying levels of automobile autonomy being introduced or planned for near-
term deployment. This creates many new potentially cognitively demanding
situations for human drivers who must now monitor the environment and the
automation and be prepared to take control at any time. Not surprisingly,
driver modeling has been the subject of many contemporary advances. For
example, Rehman, Cao, and MacGregor (2019) determined how to model
driver situation awareness into the Queueing Network variant of ACT-R using
dynamic visual sampling to simulate realistic patterns of driver attention allo-
cation. Rhie et al. (2018) used the queueing-network-based architecture to
account for oculomotor behaviors that include things like reaction time and
movement patterns to understand the level of human information processing.
Similarly, Jeong and Liu (2017) used queueing-based models to predict eye
glances and workload for secondary stimulus response tasks (related to
auditory-manual, auditory-speech, visual-manual, and visual-speech modal-
ities) humans perform while driving. In all cases, simulated model behavior
was validated against actual human data. Finally, Mirman, Curry, and Mirman
(2019) used computational cognitive modeling to show that population changes
in driver crash rates (post licensing) are consistent with sudden, nonincremental
decreases in individual crash risks. Mirman (2019) used these findings to for-
mulate a new theory of driver behavior based on dynamical systems principles,
the so-called phase transition framework, to explain and do research on this and
similar phenomena.

33.3.2 Formal Methods for Human Interaction with Complex Systems

The cognitive-architecture-based analyses discussed above all use simulation for
their analyses. These can have very high-fidelity, predictive models. However,
they can miss critical conditions that could be the source of system failures.
Recent developments have shown that these limitations can be overcome by
using cognitive models with formal methods. Specifically, the complexity of
many modern systems can make it extremely difficult for designers to determine
how humans will interact with system elements, how erroneous behavior can
occur, how these can cause failures, and how to design-away problems. Formal
methods are tools and techniques that have grown out of computer science for
mathematically modeling, specifying, and proving properties about (formally
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verifying) systems (Wing, 1990). The formal models mathematically describe
the behavior of the target system. Specification properties describe conditions
that should always be true in the system. Formal verification is the process of
mathematically proving if the formal model satisfies the specifications. There
are many different ways of using formal methods. These run the gamut from
pen and paper proofs to automated processes. For example, model checking is a
fully automated, computer-software-based approach (Clarke et al., 1999). In
this, the target system is formally modeled as a state machine: variables whose
values indicate state and transition between states occur based on inputs and/or
the current state. Specification properties logically assert desirable system con-
ditions (such as the lack of an unsafe condition) using modal logic (such as
temporal logic; Emerson, 1990). During formal verification, the model checker
exhaustively searches the formal model’s statespace. If no violation is found, the
model checker has proven that the model satisfies the specification. If a viola-
tion is found, the model checker returns a counterexample, a trace through the
model’s statespace that explicitly proves why the specification is not true.

Formal methods are mostly used in computer hardware and software
engineering (Wing, 1990). Because they are adept at finding problems that arise
from interactions between components in complex systems, researchers have
been exploring how they can be used for human interactive systems (Bolton,
2017a; Bolton, Bass, & Siminiceanu, 2013; Degani, 2004; Weyers, Bowen, Dix,
& Palanque, 2017; Wu, Rothrock, & Bolton, 2019). Most topical is the work
that has integrated models based on human task behavior and cognitive archi-
tectures with larger system models to use formal methods to improve system
reliability and safety.

33.3.2.1 Task-Model-Based Approaches

Many of the GOMS-inspired task models are composed of hierarchies of goal-
based activities that decompose down to atomic actions. These can be repre-
sented using discrete, tree-like graphs and thus readily interpreted as state
machines or process algebras, enabling their use in larger system models and
formal methods analyses of safety. For analyses focused on normative behav-
ior, formal proofs can determine whether a system will always perform safely
and enable humans to complete their goals based on how people actually
behave (as determined by a task analysis) or are expected to behave (based on
training or manuals) (Abbate & Bass, 2015; Aït-Ameur & Baron, 2006;
Basnyat, Palanque, Bernhaupt, & Poupart, 2008; Basnyat, Palanque, Schupp,
& Wright, 2007; Bolton & Bass, 2010; Bolton, Siminiceanu, & Bass, 2011;
Degani, Heymann, & Shafto, 1999; Paternò & Santoro, 2001). These techniques
are powerful, but can miss the impact of erroneous acts. Other researchers have
determined how to allow experts to manually include specific human errors into
normative tasks using mutation patterns (Bastide & Basnyat, 2007; Fields,
2001). Finally, researchers can automatically generate human errors using
systematic deviations from normative tasks based on human error genotypes
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(errors are classified based on cognitive causes) and/or phenotypes (errors are
classified based on observable deviations from a normative plan) (Barbosa,
Paiva, & Campos, 2011; Bolton, 2015; Bolton & Bass, 2013; Bolton, Bass, &
Siminiceanu, 2012; Pan & Bolton, 2018).

33.3.2.1.1 An Illustrative Example
To show how formal methods and task models can be used to determine how
human behavior (including unanticipated human error) can assess system
safety, consider a radiation therapy machine example (originally from
Bolton et al. 2012, 2019). This machine is a room-sized, computer-controlled,
medical linear accelerator. Its important feature is that it has two treatment
modes: electron beam mode for treating shallow tissue and X-ray mode
(which uses a beam one hundred times stronger than electron beam mode)
for deeper treatments. To account for the increased power, the X-ray mode
uses a spreader (not used in the other mode) to attenuate the radiation beam.
The mode and other treatment information are controlled by a practitioner
who must select options and administer treatment using a computer console.
Clearly, this is a complex machine whose proper function relies on human
interaction that could have profound implications for patient health and
safety. The following describes a formal model of this machine along with
the human task used to interact with it. Formal verification model checking
analyses for assessing system safety with both normative and potentially
unanticipated human errors is presented afterwards.
The human–machine interface formal model (top of Figure 33.3) takes five

keyboard keys as input (“X,” “E,” “Enter,” “",” and “B”) and information
presented to a practitioner who is administering treatment on a computer moni-
tor. The interface state (InterfaceState) starts in Edit where the human operator
can press “X” or “E” (PressX or PressE) to select the X-ray or electron beam
mode and, thus, transition to the ConfirmXrayData or ConfirmEBeamData
respectively. When in a confirmation state, the corresponding treatment data
are displayed (DisplayedData). The practitioner can confirm the displayed treat-
ment by pressing enter (advancing to PrepareToFireXray or PrepareToFireE-
Beam) or go back to Edit by pressing “"” (PressUp). In PrepareToFireXray or
PrepareToFireEBeam, the human operator waits for the beam to become ready
(BeamState), at which point a press of “B” (PressB) will fire the beam. This
transitions the interface to TreatmentAdministered. Alternatively, the operator
presses “"” to return to the previous state.
The device automation model (bottom of Figure 33.3) controls beam power

level, spreader position, and beam firing. The beam power level (BeamLevel) is
initially not set (NotSet). When the human selects the mode, the power level
transitions to the appropriate setting (XrayLevel or EBeamLevel). However, if
the human selects a new mode, there is a transition delay to the correct level,
where power remains in an intermediary state (XtoE or EtoX) at the old level
before automatically transitioning to the new one. The spreader position
(Spreader) starts either in- or out-of-place (InPlace or OutOfPlace). When the
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human selects X-ray or electron beam treatment, the spreader transitions to the
correct configuration (InPlace or OutOfPlace respectively). The beam firing
state (BeamFireState) is initially waiting (Waiting). When the human fires the
beam (presses “B” when the beam is ready), the beam fires (Fired) and returns
to waiting.

The normative task for interacting with this machine was represented using
EOFM (Bolton et al., 2011) using three tasks (Figure 33.4): (a) selecting the
treatment mode; (b) confirming treatment data; and (c) firing the beam. These
tasks access variables from other parts of the model such as the human–
machine interface, displayed treatment data (DisplayedData), and the ready
status of the beam (BeamState). It also has a variable (TreatmentType) that
nondeterministically specifies which treatment is prescribed (Xray or EBeam).

Figure 33.3 Concurrent state machine representation of the formal human–
machine interface (top) and automation (bottom) models for the radiation
therapy application (Bolton et al., 2012). Rounded rectangles represent states.
Arrows between states are transitions. Dotted arrows indicate initial states.
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When the interface is in the edit state (aSelectXorE), the practitioner selects
the appropriate treatment mode by performing the actions for pressing the X or
E keys. When the interface is in either of the two data confirmation states
(aConfirm), the practitioner can choose to confirm the displayed data (if the
data correspond to the prescribed treatment) by pressing enter. Alternatively, he
or she can return to Edit by pressing up (“"”). When the interface is in either
state for preparing to fire (aFire), the practitioner can fire if the beam is ready
(by pressing “B”) or press “"” to return to the previous state.
A compelling contribution of EOFM is its formal semantics (Figure

33.5a–b). These provide unambiguous, mathematical interpretations of the
task’s behavior (Bolton et al., 2011). Every activity and action is treated as a
state machine that transitions between three states: Ready (the initial state),
Executing, and Done. An activity transitions between these states based on
whether the Boolean conditions on the labeled transitions are true. These are
defined using activity strategic knowledge conditions (Preconditions,
RepeatConditions (not shown in Figure 33.5), and CompletionConditions) and

Figure 33.4 Visualization of the EOFM tasks for interacting with the radiation
therapy machine (Bolton et al., 2012): (a) selecting the treatment mode;
(b) confirming treatment data; and (c) firing the beam. Atomic actions are
rectangles and goal-directed activities are rounded rectangles. An activity
decomposes into sub-activities or actions via an arrow labeled with a
decomposition operator. This operator logically describes how many and in
what order decomposed acts are executed (i.e. xor for only one sub-act and
ord for all executing in order from left to right). Strategic knowledge
(environmental conditions that influence task performance) conditions are
connected to associated activities. These are labeled with the Boolean logic
of the condition. A Precondition (what must be true for an activity to begin)
is a yellow, downward triangle. A CompletionCondition (what must be true
for an activity to complete) is a magenta, upward triangle.
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three additional, implicit conditions. These assert whether an activity or action
can start, end, or reset based on its position in the task and other relevant
activity and action states (Bolton et al., 2011, 2017). These formal semantics are
the basis for automated translator software that converts EOFMs into a formal
representation for inclusion in a larger formal model.

For the radiation therapy example, the task from Figure 33.4 was translated
into a formal model and paired with the elements from Figure 33.3. Model
checking was used to check a linear temporal logic specification:

G¬

BeamFireState ¼ Fired

^BeamLevel ¼ XRayPowerLevel

^Spreader ¼ OutOfPlace

0
B@

1
CA: (33.1)

This asserts that the machine should globally (G) never (¬) irradiate a patient by
administering an unshielded X-ray treatment when the spreader is out of place.

Figure 33.5 The formal semantics used to interpret EOFMs (like the one from
Figure 33.4) as a formal model. (a) and (b) are the normative semantics for
task activities and actions respectively (Bolton et al., 2011). (c) and (d) are
additional erroneous transitions (for activities and actions respectively) used
for generating human errors (Bolton et al., 2019) using the task-based
taxonomy (Bolton, 2017b).
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This verified to true, proving that the radiation therapy machine will never
irradiate a patient if the human operator behaves normatively.
While the ability to prove that a model is safe with normative behavior is

powerful, this provides no insights into human error (especially that which is
unanticipated). Another contribution of EOFM can address this. Specifically,
EOFM was used in the formulation of the task-based taxonomy of erroneous
human behavior (Bolton, 2017b). This classifies where a deviation occurs based
on a violation of task formal semantics and thus indicates the observable
manifestation of the error (its phenotype (Hollnagel, 1993)) and its associated
failure of attention (the genotype of the slip (Reason, 1990)). While there are
multiple levels of classification in this taxonomy, this discussion focuses on error
modes: erroneous transitions that can occur between execution states (Figure
33.5c–d). An intrusion occurs when an act (an activity or action) executes when
it should not. An omission occurs when an act transitions to done when it
should not. A restart occurs when an act’s execution restarts when it should not.
Finally, a delay occurs when an act does not transition when it should.
These erroneous semantics were incorporated into the translator (along with

the original, normative transitions) to enable formal verification to consider all
of the possible human errors encompassed by the taxonomy (Bolton et al.,
2019). This enables modeling checking to determine if normative or potentially
unanticipated erroneous human behavior can ever cause problems.
When the erroneous transitions were enabled for the radiation machine,

the verification of (1) failed. This produced a counterexample showing how
the patient could be irradiated. First, the practitioner accidentally selected the
wrong mode for the machine (an activity Ready-to-Executing intrusion
(Figure 33.5c) of aSelectXray (Figure 33.4a) when the human improperly
attended to the precondition of the activity). This set the BeamLevel to the
XRayLevel and moved the Spreader InPlace. The human noticed the mistake
because the treatment data was incorrect. He/she then pressed “",” corrected
the error by selecting electron beam mode, thus moving the Spreader
OutOfPlace and setting the BeamLevel to XtoE. The practitioner confirmed
treatment data and, when the beam became ready, fired it. Because the beam
was fired before the BeamLevel transitioned away from XtoE, an
XRayPowerLevel was delivered without the Spreader being InPlace.
Bolton et al. (2019) went on to explore interventions that could address this

discovered problem (by ensuring that BeamState does not become ready until
the BeamLevelmatches the entered treatment mode) and evaluated the resulting
design with additional verifications.

33.3.2.1.2 Additional Capabilities of Formal, Task-Analytic Methods
The example presented above gives an illustration of both the capabilities of
using task-models with formal methods and an example of how the engineering
developments in this area can lead to new ways of using cognitive science. There
are many other applications of formal task analytic methods. Researchers
(España, Pederiva, & Panach, 2007; Li, Wei, Zheng, & Bolton, 2017; Luyten,
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Clerckx, Coninx, & Vanderdonckt, 2003; Santoro, 2005) have explored
methods for automatically designing human–machine interfaces directly from
task models so that the interfaces are guaranteed to always support the human’s
tasks. Additionally, researchers have explored how cognitive models of human
reliability can be integrated with tasks to determine the likelihood of human
errors causing failures (Fahssi, Martinie, & Palanque, 2015; Zheng, Bolton,
Daly, & Biltekoff, 2020). Finally, formal task models have been used for
automated test case generation (Barbosa et al., 2011; Campos et al., 2016; Li
& Bolton, 2019; Vieira, Leduc, Hasling, Subramanyan, & Kazmeier, 2006): a
method where tests are created from formal models to guarantee that analyst-
specified criteria are satisfied in tests. Tests can be executed automatically (to
validate that the system conforms to the model) or with human subjects (to gain
insights about things like usability and workload not manifest in the model).

33.3.2.2 Cognitive-Architecture-Based Approaches

Practical and cognitive insights can be made for formal analyses based on task
models. However, without a deeper model of cognition, analyses will be limited.
To address this, multiple researchers have explored how cognitive architectures
can be formalized so that sophisticated cognitive models can be used to under-
stand how human cognition contributes to system problems.

The most significant research in this area was the generic user modeling
(Curzon & Rukšėnas, 2017). This approach built off of preceding work on
Programmable User Models (PUMs) (Young et al., 1989), where the human
has goals to achieve with an application and actions they can perform. A rule
set (beliefs or knowledge) defines when the human may attempt to pursue a
specific goal based on the state of the human–automation interface, the environ-
ment, or other goals currently being considered. An action can be performed
when a human commits to applying it according to production rules. A separate
action execution occurs after the human commits to performing that action.

Generic user modeling has been used in many formal verification analyses.
Curzon and Blandford (2004) identified how cognitively plausible human errors
could manifest in their models. These included performance/coordination errors
associated with the phenotypes of erroneous action (Hollnagel, 1993) and
mechanisms for identifying post-completion errors, special omissions where
the human forgets to perform actions that occur after a primary goal has been
achieved (Byrne & Bovair, 1997). Problems discovered with formal verification
can be addressed with design rules (Curzon & Blandford, 2004). Work has
investigated how to use these types of formal cognitive models to determine
when different operators (expert vs. novice) may commit errors (Curzon,
Rukšėnas, & Blandford, 2007). Later contributions incorporated additional
cognitive mechanisms to account for salience, cognitive load, interpretation of
spatial cues, and timing in analyses (Rukšėnas, Back, Curzon, & Blandford,
2008, 2009; Rukšėnas et al., 2007; Rukšėnas, Curzon, Back, & Blandford,
2007). Similarly, Basuki, Cerone, Griesmayer, and Schlatte (2009) used
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heuristics for modeling human habituation, impatience, and carefulness within
the architecture.
An illustrative example was reported by Curzon et al. (2007), who evaluated

the human–machine interaction of an automated teller machine (ATM) with a
cognitive architecture and automated theorem prover to determine if a human
could ever leave the machine without completing all intended goals. The
verification discovered the presence of a post-completion error where the
human could receive his or her cash (the primary goal) and leave without
retrieving the ATM card. Curzon et al. also explored improved machine designs
that had the human retrieve the card before cash was dispensed, which was
verified to prevent the error.

33.4 Conclusions

This chapter has described the area of cognitive engineering and
explored the ways that cognitive modeling is used within this area to accomplish
engineering goals throughout the engineering life cycle. In particular, the chap-
ter showed how cognitive engineering differs from cognitive science in that: (1)
cognitive engineering addresses problems based on practical need more than
academic interest; (2) cognitive engineers tend to work in emerging techno-
logical domains rather than well-studied fields; (3) cognitive engineering mod-
elers rely heavily on domain experts to acquire information and data needed for
modeling; (4) the utility of models to engineering goals is paramount, and
insights into human cognition are only interesting if they serve these
engineering goals; and (5) cognitive engineers are typically dealing with
human performance in a complex system and must capture the control of
integrated cognitive systems in their models.
As such, cognitive models are often used by engineers to help ensure that

complex systems are human-centric. This means enabling systems to allow
humans to accomplish their goals while avoiding system performance and
safety problems. This domain was used to explore the different ways that
cognitive models have been used in engineering. To provide context, the
chapter delved into the foundational work Card, Moran, and Newell did for
GOMS. It then covered simulation analyses and showed how cognitive archi-
tectures can be used as the basis for models that provide engineers with
insights into human performance in emerging areas such as UAV piloting
and autonomous driving. The chapter also explored how the requirements of
applying cognitive models to these environments expanded the canon of both
cognitive science and modeling. While the simulation-based cognitive archi-
tecture models are definitely at the forefront of cognitive science develop-
ments, they can miss dangerous operating conditions. The use of cognitive
models in formal-methods-based verification addresses this shortcoming. In
this context, the cognitive models may be simple tasks (in the spirit of GOMS)
or based on cognitive architectures. It is important to note that, compared
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with simulation, formal verifications, as a consequence of being exhaustive,
scale very badly (something colloquially called the state explosion problem;
Clarke et al., 1999). Thus, it is not surprising that the formal methods are
much simpler than those used in simulation. The innovation in this domain
comes from determining how to include cognitive concepts in formal models
so that the power of verification can account for them. As such, the formal
methods research is heavily dependent on the advances made on the more
conventional cognitive architecture front.

As systems become more complex and integrated into everybody’s lives, it is
more important than ever that these systems be human-centered and aligned
with fulfilling humanistic goals. As such, cognitive-model-based engineering
should remain topical and relevant far into the future, especially as the
capabilities and validity of the methods improve. To this end, ACT-R (and its
variants) remains the premier architecture for cognitive modeling advances.
This is largely because ACT-R is easy to extend, has kept pace with advances
in cognitive science, and is capable of interacting with the same software as
human users (Gray, 2008).

Despite this, current research trends actually run counter to those tradition-
ally upheld by cognitive engineering modelers. Specifically, advances in data
science, machine learning (ML), and artificial intelligence (AI) tend to favor
algorithms that can (sometimes) do a remarkably good job of predicting
performance or exerting control. There is thus a serious push to use these
approaches everywhere. While it is true that cognitive modeling is a form of
ML or AI, the new methods are fundamentally different in that they are not
based on any specific theory of human cognition and are often incapable of
“explaining” their predictions. In fact, “explainable AI” is a hot topic within
cognitive engineering, with ACT-R even being used as a potential tool for this
(Gunning & Aha, 2019). Such developments have the potential to be
extremely useful from an engineering perspective because they could provide
systems with an unprecedented ability to recognize human behavior, respond
to humans, or simulate human behavior. However, these developments also
have potential pitfalls because, when used in place of cognitive models, the AI
will likely not provide the same explanations, reduce insight, and limit their
import to cognitive science. Whether or not this is a critical flaw for an
engineering effort will largely depend on whether explainability is important.
As the examples above demonstrate, significant insights into cognitive science
can be gained through cognitive engineering advances. Thus, it should be a
priority for researchers and engineers moving forward to maintain the syner-
gistic relationship between cognitive science and engineering as this will allow
both fields to advance.

Historically, the introduction of advanced and unexplained automation has
caused complex system problems in ways that could be exacerbated by ML and
AI (Bainbridge, 1983; Strauch, 2017): automation can be brittle and fail in
situations unanticipated during design and/or model fitting; the human may not
be able to track the state of the system, leading to mode confusion, disorienting
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automation surprise, and human errors; and humans can have their roles
change to ones (such as monitoring) incompatible with their abilities and
competencies. Thus, cognitive engineers should be very careful moving forward
not to abandon cognitive models in their efforts, as joint developments of
cognitive science and engineering will help ensure that engineering projects will
be human centered.

References

Abbate, A. J., & Bass, E. J. (2015). Using computational tree logic methods to analyze
reachability in user documentation. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting (Vol. 59, pp. 1481–1485).

Aït-Ameur, Y., & Baron, M. (2006). Formal and experimental validation approaches in
HCI systems design based on a shared event B model. International Journal on
Software Tools for Technology Transfer, 8(6), 547–563.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C., & Quin, Y. (2004).
An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: a theory of higher-level
cognition and its relation to visual attention. Human-Computer Interaction,
12(4), 439–462.

Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6), 775–780.
Ball, J., Myers, C., Heiberg, A., et al. (2010). The synthetic teammate project.

Computational and Mathematical Organization Theory, 16(3), 271–299.
Ballard, D. H., & Sprague, N. (2007). On the role of embodiment in modeling natural

behaviors. In W. D. Gray (Ed.), Integrated Models of Cognitive Systems.
New York, NY: Oxford University Press.

Barbosa, A., Paiva, A. C., & Campos, J. C. (2011). Test case generation from mutated
task models. In Proceedings of the 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (pp. 175–184).

Basnyat, S., Palanque, P. A., Bernhaupt, R., & Poupart, E. (2008). Formal modelling of
incidents and accidents as a means for enriching training material for satellite
control operations. In Proceedings of the Joint ESREL 2008 and 17th SRA-
Europe Conference (CD-ROM). London: Taylor & Francis.

Basnyat, S., Palanque, P., Schupp, B., & Wright, P. (2007). Formal socio-technical
barrier modelling for safety-critical interactive systems design. Safety Science,
45(5), 545–565.

Bastide, R., & Basnyat, S. (2007). Error patterns: systematic investigation of deviations
in task models. In Task Models and Diagrams for Users Interface Design 5th
International Workshop (pp. 109–121). Berlin: Springer.

Basuki, T. A., Cerone, A., Griesmayer, A., & Schlatte, R. (2009). Model-checking
user behaviour using interacting components. Formal Aspects of Computing,
1–18.

Bolton, M. L. (2015). Model checking human–human communication protocols using
task models and miscommunication generation. Journal of Aerospace
Information Systems, 12(7), 476–489.

1106 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Bolton, M. L. (2017a). Novel developments in formal methods for human factors
engineering. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (pp. 715–717).

Bolton, M. L. (2017b). A task-based taxonomy of erroneous human behavior.
International Journal of Human-Computer Studies, 108, 105–121.

Bolton, M. L., & Bass, E. J. (2010). Formally verifying human-automation interaction
as part of a system model: limitations and tradeoffs. Innovations in Systems and
Software Engineering: A NASA Journal, 6(3), 219–231.

Bolton, M. L., & Bass, E. J. (2013). Generating erroneous human behavior from
strategic knowledge in task models and evaluating its impact on system safety
with model checking. IEEE Transactions on Systems, Man and Cybernetics:
Systems, 43(6), 1314–1327.

Bolton, M. L., & Bass, E. J. (2017). Enhanced operator function model (EOFM): a task
analytic modeling formalism for including human behavior in the verification
of complex systems. In B. Weyers, J. Bowen, A. Dix, & P. Palanque (Eds.), The
Handbook of Formal Methods in Human-Computer Interaction. Berlin:
Springer.

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2012). Generating phenotypical
erroneous human behavior to evaluate human–automation interaction using
model checking. International Journal of Human-Computer Studies, 70(11),
888–906.

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verification to
evaluate human-automation interaction in safety critical systems, a review.
IEEE Transactions on Systems, Man and Cybernetics: Systems, 43(3),
488–503.

Bolton, M. L., Molinaro, K. A., & Houser, A. M. (2019). A formal method for assessing
the impact of task-based erroneous human behavior on system safety.
Reliability Engineering & System Safety, 188, 168–180.

Bolton, M. L., Siminiceanu, R. I., & Bass, E. J. (2011). A systematic approach to model
checking human-automation interaction using task-analytic models. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 41(5), 961–976.

Boring, R. L., & Rasmussen, M. (2016). GOMS-HRA: a method for treating subtasks in
dynamic human reliability analysis. In Proceedings of the 2016 European Safety
and Reliability Conference (pp. 956–963).

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition and performance
of text-editing skill: a cognitive complexity analysis. Human-Computer
Interaction, 5(1), 1–48.

Byrne, M. D. (2007). Cognitive architecture. In A. Sears & J. A. Jacko (Eds.), The
Human-Computer Interaction Handbook (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum Associates.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C.
Lebiѐre (Eds.), The Atomic Components of Thought (pp. 167–200). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Byrne, M. D., & Bovair, S. (1997). A working memory model of a common procedural
error. Cognitive Science, 21(1), 31–61.

Campos, J. C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., & Pinto, M.
(2016). Systematic automation of scenario-based testing of user interfaces. In
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (pp. 138–148).

Cognitive Modeling for Cognitive Engineering 1107

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999).Model Checking. Cambridge, MA:
MIT Press.

Curzon, P., & Blandford, A. (2004). Formally justifying user-centered design rules: a
case study on post-completion errors. In Proceedings of the 4th International
Conference on Integrated Formal Methods (pp. 461–480). Berlin: Springer.

Curzon, P., & Rukšėnas, R. (2017). Modelling the user. In B. Weyers, J. Bowen, A. Dix,
& P. Palanque (Eds.), The Handbook of Formal Methods in Human-Computer
Interaction. Berlin: Springer.

Curzon, P., Rukšėnas, R., & Blandford, A. (2007). An approach to formal verification of
human–computer interaction. Formal Aspects of Computing, 19(4), 513–550.

Degani, A. (2004).Taming HAL: Designing Interfaces Beyond 2001. New York, NY:
Macmillan.

Degani, A., Heymann, M., & Shafto, M. (1999). Formal aspects of procedures: the
problem of sequential correctness. In Proceedings of the 43rd Annual Meeting
of the Human Factors and Ergonomics Society (pp. 1113–1117). Los Angeles,
CA: SAGE.

Demir, M., McNeese, N. J., Cooke, N. J., Ball, J. T., Myers, C., & Frieman, M. (2015).
Synthetic teammate communication and coordination with humans. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
(pp. 951–955). Los Angeles, CA: SAGE.

Demir, M., McNeese, N. J., & Cooke, N. J. (2016). Team communication behaviors of
the human-automation teaming. In 2016 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA) (pp. 28–34). New York, NY: IEEE.

Emerson, E. A. (1990). Temporal and modal logic. In Formal Models and Semantics (pp.
995–1072). Oxford: Elsevier.

España, S., Pederiva, I., & Panach, J. I. (2007). Integrating model-based and task-based
approaches to user interface generation. In Computer-Aided Design of User
Interfaces V (pp. 253–260). Amsterdam: Springer.

Fahssi, R., Martinie, C., & Palanque, P. (2015). Enhanced task modelling for systematic
identification and explicit representation of human errors. InHuman-Computer
Interaction – Interact 2015 (pp. 192–212). Cham: Springer International
Publishing.

Fields, R. E. (2001). Analysis of erroneous actions in the design of critical systems.
Unpublished doctoral dissertation, University of York, York.

Gluck, K. A., Ball, J. T., Gunzelmann, G., Krusmark, M., Lyon, D., & Cooke, N.
(2005). A prospective look at a synthetic teammate for UAV applications.
In Infotech@ Aerospace. Reston: American Institute of Aeronautics and
Astronautics.

Gluck, K. A., Ball, J. T., & Krusmark, M. A. (2007). Cognitive control in a computa-
tional model of the predator pilot. In W. D. Gray (Ed.), Integrated Models of
Cognitive Systems (pp. 13–28). New York, NY: Oxford University Press.

Gray, W. D. (2008). Cognitive modeling for cognitive engineering. In R. Sun (Ed.), The
Cambrdge Handbook of Computational Psychology (pp. 565–588). Cambridge:
Cambridge University Press.

1108 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Gray, W. D. (Ed.). (2007). Integrated Models of Cognitive Systems. New York, NY:
Oxford University Press.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: an introduction to
microstrategies and to their use in describing and predicting interactive behav-
ior. Journal of Experimental Psychology: Applied, 6(4), 322–335.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: validating a
GOMS analysis for predicting and explaining real-world performance.Human-
Computer Interaction, 8(3), 237–309.

Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence pro-
gram. AI Magazine, 40(2), 44–58.

Hollnagel, E. (1993). The phenotype of erroneous actions. International Journal of Man-
Machine Studies, 39(1), 1–32.

Jeong, H., & Liu, Y. (2017). Modeling of stimulus-response secondary tasks with
different modalities while driving in a computational cognitive architecture.
In Proceedings of the 9th International Driving Symposium on Human Factors in
Driver Assessment, Training, and Vehicle Design (pp. 193–199). Iowa, IA:
University of Iowa.

John, B. E. (1988). Contributions to engineering models of human-computer interaction.
Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

John, B. E. (1996). TYPIST: a theory of performance in skilled typing. Human-
Computer Interaction, 11(4), 321–355.

Kebabjian, R. (2016). Accident statistics. planecrashinfo.com. Retrieved from www
.planecrashinfo.com/cause.htm [last accessed July 30, 2022].

Kenny, D. J. (2015). 26th Joseph T. Nall Report: General Aviation Accidents in 2014.
Technical Report. Frederick, MD: AOPA Foundation.

Kieras, D. E. (1997). A guide to GOMS model usability evaluation using NGOMSL. In
M. Helander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of Human-
Computer Interaction (2nd ed., pp. 733–766). New York, NY: Elsevier.

Kieras, D. E. (2007). Model-based evaluation. In A. Sears & J. A. Jacko (Eds.), The
Human-Computer Interaction Handbook (2nd ed.). Mahwah, NJ: Lawrence
Erlbaum Associates.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: a
production-system analysis of transfer of training. Journal of Memory and
Language, 25, 507–524.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for
cognition and performance with application to human-computer interaction.
Human-Computer Interaction, 12(4), 391–438.

Kieras, D. E., Wakefield, G. H., Thompson, E. R., Iyer, N., & Simpson, B. D. (2016).
Modeling two-channel speech processing with the EPIC cognitive architecture.
Topics in Cognitive Science, 8(1), 291–304.

Kirwan, B., & Ainsworth, L. K. (Eds.). (1992). A Guide to Task Analysis. Washington,
DC: Taylor & Francis.

Le Bot, P. (2004). Human reliability data, human error and accident models – illustra-
tion through the Three Mile Island accident analysis. Reliability Engineering &
System Safety, 83(2), 153–167.

Li, M., & Bolton, M. L. (2019). Task-based automated test case generation for human-
machine interaction. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting (Vol. 63, pp. 807–811).

Cognitive Modeling for Cognitive Engineering 1109

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
http://www.planecrashinfo.com/cause.htm
https://doi.org/10.1017/9781108755610.038


Li, M., Wei, J., Zheng, X., & Bolton, M. L. (2017). A formal machine learning approach
to generating human-machine interfaces from task models. IEEE Transactions
of Human Machine Systems, 47(6), 822–833.

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing Network-Model Human Processor
(QN-MHP): a computational architecture for multitask performance in
human-machine systems. ACM Transactions on Computer-Human Interaction
(TOCHI), 13(1), 37–70.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in
problem solving: combined influences on operator selection. Cognitive
Psychology, 31, 168–217.

Luyten, K., Clerckx, T., Coninx, K., & Vanderdonckt, J. (2003). Derivation of a dialog
model from a task model by activity chain extraction. In Proceedings of the
10th International Workshop on Interactive Systems. Design, Specification, and
Verification (pp. 203–217). Berlin: Springer.

Manning, S. D., Rash, C. E., LeDuc, P. A., Noback, R. K., & McKeon, J. (2004). The
Role of human Causal Factors in US Army Unmanned Aerial Vehicle
Accidents. Technical Report No. 2004-11. Adelphi, MD: USA Army
Research Laboratory.

Makary, M. A., & Daniel, M. (2016). Medical error – the third leading cause of death in
the US. BMJ, 353, 5.

Mirman, J. H. (2019). A dynamical systems perspective on driver behavior.
Transportation Research Part F: Traffic Psychology and Behaviour, 63,
193–203.

Mirman, J. H., Curry, A. E., & Mirman, D. (2019). Learning to drive: a reconceptua-
lization. Transportation Research Part F: Traffic Psychology and Behaviour, 62,
316–326.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

Newell, A., & Card, S. K. (1985). The prospects for psychological science in human-
computer interaction. Human-Computer Interaction, 1(3), 209–242.

NHTSA. (2008). National Motor Vehicle Crash Causation Survey: Report to Congress.
Technical Report No. DOT HS 811 059. Springfield: National Highway
Traffic Safety Administration.

Pan, D., & Bolton, M. L. (2018). Properties for formally assessing the performance level
of human-human collaborative procedures with miscommunications and erro-
neous human behavior. International Journal of Industrial Ergonomics, 63,
75–88.

Paternò, F., & Santoro, C. (2001). Integrating model checking and HCI tools to help
designers verify user interface properties. In Proceedings of the 7th International
Workshop on the Design, Specification, and Verification of Interactive Systems
(pp. 135–150). Berlin: Springer.

Paternò, F., Mancini, C., & Meniconi, S. (1997). ConcurTaskTrees: a diagrammatic
notation for specifying task models. In Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction (pp. 362–369).
London: Chapman & Hall.

Pew, R. W. (2007). Some history of human performance modeling. In W. D. Gray (Ed.),
Integrated Models of Cognitive Systems. New York, NY: Oxford University
Press.

1110 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Pritchett, A. R., Feigh, K. M., Kim, S. Y., & Kannan, S. K. (2014). Work models that
compute to describe multiagent concepts of operation: part 1. Journal of
Aerospace Information Systems, 11(10), 610–622.

Reason, J. (1990). Human Error. New York, NY: Cambridge University Press.
Rehman, U., Cao, S., & MacGregor, C. (2019). Using an integrated cognitive architec-

ture to model the effect of environmental complexity on drivers’ situation
awareness. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (pp. 812–816).

Rhie, Y. L., Lim, J. H., & Yun, M. H. (2018). Queueing network based driver model for
varying levels of information processing. IEEE Transactions on Human-
Machine Systems, 49(6), 508–517.

Rodgers, S., Myers, C., Ball, J., & Freiman, M. (2011). The situation model in the
synthetic teammate project. In Proceedings of the 20th Annual Conference on
Behavior Representation in Modeling and Simulation (pp. 66–73).

Rukšėnas, R., Back, J., Curzon, P., & Blandford, A. (2008). Formal modelling of
salience and cognitive load. In Proceedings of the 2nd International Workshop
on Formal Methods for Interactive Systems (pp. 57–75). Amsterdam: Elsevier
Science Publishers.

Rukšėnas, R., Back, J., Curzon, P., & Blandford, A. (2009). Verification-guided model-
ling of salience and cognitive load. Formal Aspects of Computing, 21(6),
541–569.

Rukšėnas, R., Curzon, P., Back, J., & Blandford, A. (2007). Formal modelling of
cognitive interpretation. In Proceedings of the 13th International Workshop on
the Design, Specification, and Verification of Interactive Systems (pp. 123–136).
London: Springer.

Rukšėnas, R., Curzon, P., Blandford, A., & Back, J. (2014). Combining human error
verification and timing analysis: a case study on an infusion pump. In
Proceedings of the 13th International Workshop on the Design, Specification,
and Verification of Interactive Systems (pp. 123–136). London: Springer.

Salvucci, D. D. (2001). Predicting the effects of in-car interface use on driver perform-
ance: an integrated model approach. International Journal of Human-Computer
Studies, 55(1), 85–107.

Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human
Factors, 48(2), 362–380.

Salvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering.
Perception, 33(10), 1233–1248.

Salvucci, D. D., & Macuga, K. L. (2002). Predicting the effects of cellular-phone dialing
on driver performance. Cognitive Systems Research, 3(1), 95–102.

Santoro, C. (2005). A Task Model-Based Approach for Design and Evaluation of
Innovative User Interfaces. Belgium: Presses universitaires de Louvain.

Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps toward building math-
ematical and computer models from cognitive task analyses. Human Factors,
45(1), 77–103.

Shepherd, A. (1998). HTA as a framework for task analysis. Ergonomics, 41(11),
1537–1552.

Shepherd, A. (2001). Hierarchical Task Analysis. New York, NY: Taylor & Francis.
Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction. Reviews of

Human Factors and Ergonomics, 1(1), 89–129.

Cognitive Modeling for Cognitive Engineering 1111

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1017/9781108755610.038


Simon, H. A. (1996). The Sciences of the Artificial (3rd ed.). Cambridge, MA: MIT
Press.

Strauch, B. (2017). Ironies of automation: still unresolved after all these years. IEEE
Transactions on Human-Machine Systems, 48(5), 419–433.

Thomas, M. (1994). The role of formal methods in achieving dependable software.
Reliability Engineering & System Safety, 43(2), 129–134.

Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., & Kazmeier, J. (2006).
Automation of GUI testing using a model-driven approach. In Proceedings
of the 2006 International Workshop on Automation of Software Test (pp. 9–14).

Weyers, B., Bowen, J., Dix, A., & Palanque, P. (Eds.). (2017). The Handbook of Formal
Methods in Human-Computer Interaction. Berlin: Springer.

Wing, J. M. (1990). A specifier’s introduction to formal methods. Computer, 23(9),
8–22.

Wu, C., Rothrock, L., & Bolton, M. (2019). Editorial special issue on computational
human performance modeling. IEEE Transactions on Human-Machine
Systems, 49(6), 470–473.

Young, R. M., Green, T. R. G., & Simon, T. (1989). Programmable user models for
predictive evaluation of interface designs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 15–19). New York:
ACM.

Zheng, X., Bolton, M. L., Daly, C., & Biltekoff, E. (2020). The development of a next-
generation human reliability analysis: systems analysis for formal pharmaceut-
ical human reliability (SAFPH℞). Reliability Engineering & System Safety, 20.
https://doi.org/10.1016/j.ress.2020.106927

1112 matthew l. bolton and wayne d. gray

https://doi.org/10.1017/9781108755610.038 Published online by Cambridge University Press

https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1016/j.ress.2020.106927
https://doi.org/10.1017/9781108755610.038

